Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Brain Behav Immun ; 107: 1-15, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36108946

RESUMEN

Stress-related psychiatric disorders including anxiety disorders, mood disorders, and trauma and stressor-related disorders, such as posttraumatic stress disorder (PTSD), affect millions of people world-wide each year. Individuals with stress-related psychiatric disorders have been found to have poor immunoregulation, increased proinflammatory markers, and dysregulation of fear memory. The "Old Friends" hypothesis proposes that a lack of immunoregulatory inputs has led to a higher prevalence of inflammatory disorders and stress-related psychiatric disorders, in which inappropriate inflammation is thought to be a risk factor. Immunization with a soil-derived saprophytic bacterium with anti-inflammatory and immunoregulatory properties, Mycobacterium vaccae NCTC 11659, can lower proinflammatory biomarkers, increase stress resilience, and, when given prior to or after fear conditioning in a rat model of fear-potentiated startle, enhance fear extinction. In this study, we investigated whether immunization with heat-killed M. vaccae NCTC 11659 would enhance fear extinction in contextual or auditory-cued fear conditioning paradigms and whether M. vaccae NCTC 11659 would prevent stress-induced exaggeration of fear expression or stress-induced resistance to extinction learning. Adult male Sprague Dawley rats were immunized with M. vaccae NCTC 11659 (subcutaneous injections once a week for three weeks), and underwent either: Experiment 1) one-trial contextual fear conditioning; Experiment 2) two-trial contextual fear conditioning; Experiment 3) stress-induced enhancement of contextual fear conditioning; Experiment 4) stress-induced enhancement of auditory-cued fear conditioning; or Experiment 5) stress-induced enhancement of auditory-cued fear conditioning exploring short-term memory. Immunizations with M. vaccae NCTC 11659 had no effect on one- or two-trial contextual fear conditioning or contextual fear extinction, with or without exposure to inescapable stress. However, inescapable stress increased resistance to auditory-cued fear extinction. Immunization with M. vaccae NCTC 11659 prevented the stress-induced increase in resistance to auditory-cued fear extinction learning. Finally, in an auditory-cued fear conditioning paradigm exploring short-term memory and fear acquisition, immunization with M. vaccae did not prevent fear acquisition, either with or without exposure to inescapable stress, consistent with the hypothesis that M. vaccae NCTC 11659 has no effect on fear acquisition but enhances fear extinction. These data are consistent with the hypothesis that increased immunoregulation following immunization with M. vaccae NCTC 11659 promotes stress resilience, in particular by preventing stress-induced resistance to fear extinction, and may be a potential therapeutic intervention for trauma- and stressor-related disorders such as PTSD.


Asunto(s)
Extinción Psicológica , Calor , Masculino , Ratas , Animales , Ratas Sprague-Dawley , Miedo
2.
Mol Psychiatry ; 2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36437312

RESUMEN

Exposure to trauma is a risk factor for the development of a number of mood disorders, and may enhance vulnerability to future adverse life events. Recent data demonstrate that ventral tegmental area (VTA) neurons expressing the vesicular glutamate transporter 2 (VGluT2) signal and causally contribute to behaviors that involve aversive or threatening stimuli. However, it is unknown whether VTA VGluT2 neurons regulate transsituational outcomes of stress and whether these neurons are sensitive to stressor controllability. This work adapted an operant mouse paradigm to examine the impact of stressor controllability on VTA VGluT2 neuron function as well as the role of VTA VGluT2 neurons in mediating transsituational stressor outcomes. Uncontrollable (inescapable) stress, but not physically identical controllable (escapable) stress, produced social avoidance and exaggerated fear in male mice. Uncontrollable stress in females led to exploratory avoidance of a novel brightly lit environment. Both controllable and uncontrollable stressors increased VTA VGluT2 neuronal activity, and chemogenetic silencing of VTA VGluT2 neurons prevented the behavioral sequelae of uncontrollable stress in male and female mice. Further, we show that stress activates multiple genetically-distinct subtypes of VTA VGluT2 neurons, especially those that are VGluT2+VGaT+, as well as lateral habenula neurons receiving synaptic input from VTA VGluT2 neurons. Our results provide causal evidence that mice can be used for identifying stressor controllability circuitry and that VTA VGluT2 neurons contribute to transsituational stressor outcomes, such as social avoidance, exaggerated fear, or anxiety-like behavior that are observed within trauma-related disorders.

3.
Stress ; 26(1): 2245492, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37549016

RESUMEN

Common stress-related mental health disorders affect women more than men. Physical activity can provide protection against the development of future stress-related mental health disorders (i.e. stress resistance) in both sexes, but whether there are sex differences in exercise-induced stress resistance is unknown. We have previously observed that voluntary wheel running (VWR) protects both female and male rats against the anxiety- and exaggerated fear-like behavioral effects of inescapable stress, but the time-course and magnitude of VWR-induced stress resilience has not been compared between sexes. The goal of the current study was to determine whether there are sex differences in the time-course and magnitude of exercise-induced stress resistance. In adult female and male Sprague Dawley rats, 6 weeks of VWR produced robust protection against stress-induced social avoidance and exaggerated fear. The magnitude of stress protection was similar between the sexes and was independent of reactivity to shock, general locomotor activity, and circulating corticosterone. Interestingly, 3 weeks of VWR prevented both stress-induced social avoidance and exaggerated fear in females but only prevented stress-induced social avoidance in males. Ovariectomy altered wheel-running behavior in females such that it resembled that of males, however; 3 weeks of VWR still protected females against behavioral consequences of stress regardless of the absence of ovaries. These data indicate that female Sprague Dawley rats are more responsive to exercise-induced stress resistance than are males.


The duration of wheel running required to enable stress resistance differs between the sexes in a behavior-dependent manner.Wheel running enables rapid protection against stress-induced social avoidance in both male and female Sprague Dawley rats.Wheel running enables protection against stress-induced exaggerated fear more readily in female Sprague Dawley rats compared to males.Ovarian hormones are not necessary for stress-protection produced by 3 weeks of wheel running in female Sprague Dawley rats.


Asunto(s)
Actividad Motora , Condicionamiento Físico Animal , Ratas , Animales , Femenino , Masculino , Humanos , Ratas Sprague-Dawley , Estrés Psicológico , Ovariectomía , Miedo
4.
Brain Behav Immun ; 100: 267-277, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34915155

RESUMEN

SARS-CoV-2 infection produces neuroinflammation as well as neurological, cognitive (i.e., brain fog), and neuropsychiatric symptoms (e.g., depression, anxiety), which can persist for an extended period (6 months) after resolution of the infection. The neuroimmune mechanism(s) that produces SARS-CoV-2-induced neuroinflammation has not been characterized. Proposed mechanisms include peripheral cytokine signaling to the brain and/or direct viral infection of the CNS. Here, we explore the novel hypothesis that a structural protein (S1) derived from SARS-CoV-2 functions as a pathogen-associated molecular pattern (PAMP) to induce neuroinflammatory processes independent of viral infection. Prior evidence suggests that the S1 subunit of the SARS-CoV-2 spike protein is inflammatory in vitro and signals through the pattern recognition receptor TLR4. Therefore, we examined whether the S1 subunit is sufficient to drive 1) a behavioral sickness response, 2) a neuroinflammatory response, 3) direct activation of microglia in vitro, and 4) activation of transgenic human TLR2 and TLR4 HEK293 cells. Adult male Sprague-Dawley rats were injected intra-cisterna magna (ICM) with vehicle or S1. In-cage behavioral monitoring (8 h post-ICM) demonstrated that S1 reduced several behaviors, including total activity, self-grooming, and wall-rearing. S1 also increased social avoidance in the juvenile social exploration test (24 h post-ICM). S1 increased and/or modulated neuroimmune gene expression (Iba1, Cd11b, MhcIIα, Cd200r1, Gfap, Tlr2, Tlr4, Nlrp3, Il1b, Hmgb1) and protein levels (IFNγ, IL-1ß, TNF, CXCL1, IL-2, IL-10), which varied across brain regions (hypothalamus, hippocampus, and frontal cortex) and time (24 h and 7d) post-S1 treatment. Direct exposure of microglia to S1 resulted in increased gene expression (Il1b, Il6, Tnf, Nlrp3) and protein levels (IL-1ß, IL-6, TNF, CXCL1, IL-10). S1 also activated TLR2 and TLR4 receptor signaling in HEK293 transgenic cells. Taken together, these findings suggest that structural proteins derived from SARS-CoV-2 might function independently as PAMPs to induce neuroinflammatory processes via pattern recognition receptor engagement.


Asunto(s)
COVID-19 , Microglía , Animales , Células HEK293 , Humanos , Masculino , Enfermedades Neuroinflamatorias , Moléculas de Patrón Molecular Asociado a Patógenos , Ratas , Ratas Sprague-Dawley , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
5.
Eur J Neurosci ; 52(1): 2530-2547, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31800125

RESUMEN

Adverse life events can lead to stable changes in brain structure and function and are considered primary sources of risk for post-traumatic stress disorder, depression and other neuropsychiatric disorders. However, most individuals do not develop these conditions following exposure to traumatic experiences, and research efforts have identified a number of experiential factors associated with an individual's ability to withstand, adapt to and facilitate recovery from adversity. While multiple animal models of stress resilience exist, so that the detailed biological mechanisms can be explored, studies have been disproportionately conducted in male subjects even though the prevalence and presentation of stress-linked disorders differ between sexes. This review focuses on (a) the mechanisms by which experiential factors (behavioral control over a stressor, exercise) reduce the impact of adverse events as studied in males; (b) whether other manipulations (ketamine) that buffer against stress-induced sequelae engage the same circuit features; and (c) whether these processes operate similarly in females. We argue that investigation of experiential factors that produce resistance/resilience rather than vulnerability to adversity will generate a unique set of biological mechanisms that potentially underlie sex differences in mood disorders.


Asunto(s)
Ketamina , Trastornos por Estrés Postraumático , Animales , Encéfalo , Femenino , Humanos , Masculino , Caracteres Sexuales , Estrés Psicológico
6.
Brain Behav Immun ; 90: 70-80, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32750541

RESUMEN

The proinflammatory cytokine interleukin (IL)-1ß plays a pivotal role in the behavioral manifestations (i.e., sickness) of the stress response. Indeed, exposure to acute and chronic stressors induces the expression of IL-1ß in stress-sensitive brain regions. Thus, it is typically presumed that exposure to stressors induces the extra-cellular release of IL-1ß in the brain parenchyma. However, this stress-evoked neuroimmune phenomenon has not been directly demonstrated nor has the cellular process of IL-1ß release into the extracellular milieu been characterized in brain. This cellular process involves a form of inflammatory cell death, termed pyroptosis, which involves: 1) activation of caspase-1, 2) caspase-1 maturation of IL-1ß, 3) caspase-1 cleavage of gasdermin D (GSDMD), and 4) GSDMD-induced permeability of the cell membrane through which IL-1ß is released into the extracellular space. Thus, the present study examined whether stress induces the extra-cellular release of IL-1ß and engages the above cellular process in mediating IL-1ß release in the brain. Male Sprague-Dawley rats were exposed to inescapable tailshock (IS). IL-1ß extra-cellular release, caspase-1 activity and cleavage of GSDMD were measured in dorsal hippocampus. We found that exposure to IS induced a transient increase in the release of IL-1ß into the extracellular space immediately after termination of the stressor. IS also induced a transient increase in caspase-1 activity prior to IL-1ß release, while activation of GSDMD was observed immediately after termination of the stressor. IS also increased mRNA and protein expression of the ESCRTIII protein CHMP4B, which is involved in cellular repair. The present results suggest that exposure to an acute stressor induces the hallmarks of pyroptosis in brain, which might serve as a key cellular process involved in the release of IL-1ß into the extracellular milieu of the brain parenchyma.


Asunto(s)
Hipocampo , Péptidos y Proteínas de Señalización Intracelular , Animales , Caspasa 1/metabolismo , Hipocampo/metabolismo , Masculino , Proteínas de Unión a Fosfato/metabolismo , Ratas , Ratas Sprague-Dawley
7.
Proc Natl Acad Sci U S A ; 113(24): E3441-50, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27247388

RESUMEN

Opioid use for pain management has dramatically increased, with little assessment of potential pathophysiological consequences for the primary pain condition. Here, a short course of morphine, starting 10 d after injury in male rats, paradoxically and remarkably doubled the duration of chronic constriction injury (CCI)-allodynia, months after morphine ceased. No such effect of opioids on neuropathic pain has previously been reported. Using pharmacologic and genetic approaches, we discovered that the initiation and maintenance of this multimonth prolongation of neuropathic pain was mediated by a previously unidentified mechanism for spinal cord and pain-namely, morphine-induced spinal NOD-like receptor protein 3 (NLRP3) inflammasomes and associated release of interleukin-1ß (IL-1ß). As spinal dorsal horn microglia expressed this signaling platform, these cells were selectively inhibited in vivo after transfection with a novel Designer Receptor Exclusively Activated by Designer Drugs (DREADD). Multiday treatment with the DREADD-specific ligand clozapine-N-oxide prevented and enduringly reversed morphine-induced persistent sensitization for weeks to months after cessation of clozapine-N-oxide. These data demonstrate both the critical importance of microglia and that maintenance of chronic pain created by early exposure to opioids can be disrupted, resetting pain to normal. These data also provide strong support for the recent "two-hit hypothesis" of microglial priming, leading to exaggerated reactivity after the second challenge, documented here in the context of nerve injury followed by morphine. This study predicts that prolonged pain is an unrealized and clinically concerning consequence of the abundant use of opioids in chronic pain.


Asunto(s)
Dolor Crónico/metabolismo , Inflamasomas/metabolismo , Microglía/metabolismo , Morfina/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neuralgia/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Animales , Dolor Crónico/patología , Dolor Crónico/fisiopatología , Clozapina/análogos & derivados , Clozapina/farmacología , Interleucina-1beta/metabolismo , Masculino , Microglía/patología , Neuralgia/patología , Neuralgia/fisiopatología , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/patología , Asta Dorsal de la Médula Espinal/fisiopatología
8.
Eur J Neurosci ; 47(8): 959-967, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29359831

RESUMEN

The degree of behavioural control that an organism has over a stressor is a potent modulator of the stressor's impact; controllable stressors produce none of the neurochemical and behavioural sequelae that occur if the stressor is uncontrollable. Research demonstrating the importance of control and the neural mechanisms responsible has been conducted almost entirely with male rats. It is unknown if behavioural control is stress blunting in females, and whether or not a similar resilience circuitry is engaged. Female rats were exposed to controllable, yoked uncontrollable or no tailshock. In separate experiments, behavioural (juvenile social exploration, fear and shuttle box escape) and neurochemical (activation of dorsal raphe serotonin and dorsal raphe-projecting prelimbic neurons) outcomes, which are sensitive to the dimension of control in males, were assessed. Despite successful acquisition of the controlling response, behavioural control did not mitigate dorsal raphe serotonergic activation and behavioural outcomes induced by tailshock, as it does in males. Moreover, behavioural control failed to selectively engage prelimbic cells that project to the dorsal raphe as in males. Pharmacological activation of the prelimbic cortex restored the stress-buffering effects of control. Collectively, the data demonstrate stressor controllability phenomena are absent in females and that the protective prelimbic circuitry is present but not engaged. Reduced benefit from coping responses may represent a novel approach for understanding differential sex prevalence in stress-related psychiatric disorders.


Asunto(s)
Reacción de Prevención/fisiología , Núcleo Dorsal del Rafe/metabolismo , Núcleo Dorsal del Rafe/fisiología , Conducta Exploratoria/fisiología , Miedo/fisiología , Serotonina/metabolismo , Estrés Psicológico/metabolismo , Animales , Electrochoque , Femenino , Lóbulo Límbico/efectos de los fármacos , Microinyecciones , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/metabolismo , Picrotoxina/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Estilbamidinas/metabolismo
9.
Brain Behav Immun ; 71: 18-22, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29678795

RESUMEN

Mounting evidence indicates that cytokines secreted by innate immune cells in the brain play a central role in regulating neural circuits that subserve mood, cognition, and sickness responses. A major impediment to the study of neuroimmune signaling in healthy and disease states is the absence of tools for in vivo detection of cytokine release in the brain. Here we describe the design and application of a cytokine detection device capable of serial monitoring of local cytokine release in discrete brain regions. The immunocapture device consisted of a modified optical fiber labeled with a capture antibody specific for the pro-inflammatory cytokine interleukin-1 beta (IL-1ß). Using a sandwich immunoassay method, in vitro data demonstrate that the sensing interface of the modified optical fiber has a linear detection range of 3.9 pg mL-1-500 pg mL-1 and spatial resolution on the order of 200-450 µm. Finally, we show that the immunocapture device can be introduced into a perforated guide cannula for repeated analyte measurements in vivo. An increase in fluorescence detection of spatially localized intrahippocampal IL-1ß release was observed following a peripheral lipopolysaccharide challenge in Sprague-Dawley rats. This novel immunosensing technology represents an opportunity for unlocking the function of neuroimmune signaling.


Asunto(s)
Mapeo Encefálico/instrumentación , Mapeo Encefálico/métodos , Citocinas/metabolismo , Interleucina-1beta/metabolismo , Animales , Anticuerpos , Encéfalo/inmunología , Encéfalo/metabolismo , Citocinas/análisis , Inmunoensayo/métodos , Interleucina-1beta/análisis , Lipopolisacáridos/farmacología , Masculino , Fibras Ópticas , Ratas , Ratas Sprague-Dawley
10.
Psychol Sci ; 28(2): 143-161, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28182526

RESUMEN

Despite the ubiquitous use of Pavlovian fear conditioning as a model for fear learning, the highly predictable conditions used in the laboratory do not resemble real-world conditions, in which dangerous situations can lead to unpleasant outcomes in unpredictable ways. In the current experiments, we varied the timing of aversive events after predictive cues in rodents and discovered that temporal ambiguity of aversive events greatly enhances fear. During fear conditioning with unpredictably timed aversive events, pharmacological inactivation of the dorsal hippocampus or optogenetic silencing of cornu ammonis 1 cells during aversive negative prediction errors prevented this enhancement of fear without affecting fear learning for predictable events. Dorsal hippocampal inactivation also prevented ambiguity-related enhancement of fear during auditory fear conditioning under a partial-reinforcement schedule. These results reveal that information about the timing and occurrence of aversive events is rapidly acquired and that unexpectedly timed or omitted aversive events generate hippocampal signals to enhance fear learning.


Asunto(s)
Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Hipocampo/fisiología , Memoria/fisiología , Refuerzo en Psicología , Animales , Humanos , Masculino , Optogenética , Ratas , Ratas Long-Evans
11.
Neurobiol Stress ; 28: 100597, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38213318

RESUMEN

Dominance status has extensive effects on physical and mental health, and an individual's relative position can be shaped by experiential factors. A variety of considerations suggest that the experience of behavioral control over stressors should produce winning in dominance tests and that winning should blunt the impact of later stressors, as does prior control. To investigate the interplay between competitive success and stressor control, we first examined the impact of stressor controllability on subsequent performance in a warm spot competition test modified for rats. Prior experience of controllable, but not physically identical uncontrollable, stress increased later effortful behavior and occupation of the warm spot. Controllable stress subjects consistently ranked higher than did uncontrollable stress subjects. Pharmacological inactivation of the prelimbic (PL) cortex during behavioral control prevented later facilitation of dominance. Next, we explored whether repeated winning experiences produced later resistance against the typical sequelae of uncontrollable stress. To establish dominance status, triads of rats were given five sessions of warm spot competition. The development of stable dominance was prevented by reversible inactivation of the PL or NMDA receptor blockade in the dorsomedial striatum. Stable winning blunted the later stress-induced increase in dorsal raphe nucleus serotonergic activity, as well as prevented uncontrollable stress-induced social avoidance. In contrast, endocrine and neuroimmune responses to uncontrollable stress were unaffected, indicating a selective impact of prior dominance. Together, these data demonstrate that instrumental control over stress promotes later dominance, but also reveal that winning experiences buffer against the neural and behavioral outcomes of future adversity.

12.
Front Psychiatry ; 14: 1170417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229393

RESUMEN

"Learned helplessness" refers to debilitating outcomes, such as passivity and increased fear, that follow an uncontrollable adverse event, but do not when that event is controllable. The original explanation argued that when events are uncontrollable the animal learns that outcomes are independent of its behavior, and that this is the active ingredient in producing the effects. Controllable adverse events, in contrast, fail to produce these outcomes because they lack the active uncontrollability element. Recent work on the neural basis of helplessness, however, takes the opposite view. Prolonged exposure to aversive stimulation per se produces the debilitation by potent activation of serotonergic neurons in the brainstem dorsal raphe nucleus. Debilitation is prevented with an instrumental controlling response, which activates prefrontal circuitry detecting control and subsequently blunting the dorsal raphe nucleus response. Furthermore, learning control alters the prefrontal response to future adverse events, thereby preventing debilitation and producing long-term resiliency. The general implications of these neuroscience findings may apply to psychological therapy and prevention, in particular by suggesting the importance of cognitions and control, rather than habits of control.

13.
Neuropsychopharmacology ; 48(3): 498-507, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36076018

RESUMEN

Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.


Asunto(s)
Control de la Conducta , Dopamina , Ratas , Femenino , Masculino , Animales , Dopamina/farmacología , Hibridación Fluorescente in Situ , Corteza Prefrontal , Neostriado/metabolismo , Cuerpo Estriado/metabolismo , Receptores de Dopamina D1/metabolismo
14.
bioRxiv ; 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37333397

RESUMEN

Dominance status has extensive effects on physical and mental health, and an individual's relative position can be shaped by experiential factors. A variety of considerations suggest that the experience of behavioral control over stressors should produce winning in dominance tests and that winning should blunt the impact of later stressors, as does prior control. To investigate the interplay between competitive success and stressor control, we first examined the impact of stressor controllability on subsequent performance in a warm spot competition test modified for rats. Prior experience of controllable, but not physically identical uncontrollable, stress increased later effortful behavior and occupation of the warm spot. Controllable stress subjects consistently ranked higher than did uncontrollable stress subjects. Pharmacological inactivation of the prelimbic (PL) cortex during behavioral control prevented later facilitation of dominance. Next, we explored whether repeated winning experiences produced later resistance against the typical sequelae of uncontrollable stress. To establish dominance status, triads of rats were given five sessions of warm spot competition. Reversible inactivation of the PL or NMDA receptor blockade in the dorsomedial striatum led to a long-term reduction in social rank. Stable dominance blunted the later stress-induced increase in dorsal raphe nucleus serotonergic activity, as well as prevented stress-induced social avoidance. In contrast, endocrine and neuroimmune responses to uncontrollable stress were unaffected, indicating a selective impact of prior dominance. Together, these data demonstrate that instrumental control over stress promotes later dominance, but also reveal that winning experiences buffer against the neural and behavioral outcomes of future adversity.

15.
Neuroscience ; 534: 1-15, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37852412

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are the first-line pharmacological treatment for a variety of anxiety-, trauma- and stressor-related disorders. Although they are efficacious, therapeutic improvements require several weeks of treatment and are often associated with an initial exacerbation of symptoms. The dorsal raphe nucleus (DR) has been proposed as an important target for the modulation of emotional responses and the therapeutic effects of SSRIs. Using a fear-conditioning paradigm we aimed to understand how SSRIs affect emotional learning and memory, and their effects on serotonergic circuitry. Adult male BALB/c mice were treated with vehicle (n = 16) or the SSRI fluoxetine (18 mg/kg/d) acutely (n = 16), or chronically (21d, n = 16), prior to fear conditioning. Treatment was stopped, and half of the mice (n = 8/treatment group) were exposed to cued fear memory recall 72 h later. Activation of DR serotonergic neurons during fear conditioning (Experiment 1) or fear memory recall (Experiment 2), was measured using dual-label immunohistochemistry for Tph2 and c-Fos. Acute and chronic fluoxetine treatment reduced associative fear learning without affecting memory recall and had opposite effects on anxiety-like behaviour. Acute fluoxetine decreased serotonergic activity in the DR, while chronic treatment led to serotonergic activity that was indistinguishable from that of control levels in DRD and DRV subpopulations. Chronic fluoxetine facilitated fear extinction, which was associated with rostral DRD inhibition. These findings provide further evidence that SSRIs can alter aspects of learning and memory processes and are consistent with a role for discrete populations of DR serotonergic neurons in regulating fear- and anxiety-related behaviours.


Asunto(s)
Núcleo Dorsal del Rafe , Fluoxetina , Ratones , Masculino , Animales , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Miedo/fisiología , Extinción Psicológica , Ratones Endogámicos BALB C
16.
Front Mol Neurosci ; 16: 1225847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664240

RESUMEN

A challenge for central nervous system (CNS) tissue analysis in neuroscience research has been the difficulty to codetect and colocalize gene and protein expression in the same tissue. Given the importance of identifying gene expression relative to proteins of interest, for example, cell-type specific markers, we aimed to develop a protocol to optimize their codetection. RNAscope fluorescent in situ hybridization (FISH) combined with immunohistochemistry (IHC) in fixed (CNS) tissue sections allows for reliable quantification of gene transcripts of interest within IHC-labeled cells. This paper describes a new method for simultaneous visualization of FISH and IHC in thicker (14-µm), fixed tissue samples, using spinal cord sections. This method's effectiveness is shown by the cell-type-specific quantification of two genes, namely the proinflammatory cytokine interleukin-1beta (IL-1b) and the inflammasome NLR family pyrin domain containing 3 (NLRP3). These genes are challenging to measure accurately using immunohistochemistry (IHC) due to the nonspecificity of available antibodies and the hard-to-distinguish, dot-like visualizations of the labeled proteins within the tissue. These measurements were carried out in spinal cord sections after unilateral chronic constriction injury of the sciatic nerve to induce neuroinflammation in the spinal cord. RNAscope is used to label transcripts of genes of interest and IHC is used to label cell-type specific antigens (IBA1 for microglia, NeuN for neurons). This combination allowed for labeled RNA transcripts to be quantified within cell-type specific boundaries using confocal microscopy and standard image analysis methods. This method makes it easy to answer empirical questions that are intractable with standard IHC or in situ hybridization alone. The method, which has been optimized for spinal cord tissue and to minimize tissue preparation time and costs, is described in detail from tissue collection to image analysis. Further, the relative expression changes in inflammatory genes NLRP3 and IL-1b in spinal cord microglia vs. neurons of somatotopically relevant laminae are described for the first time.

17.
Learn Mem ; 17(11): 591-9, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21041382

RESUMEN

Activation of the infralimbic region (IL) of the medial prefrontal cortex (mPFC) reduces conditioned fear in a variety of situations, and the IL is thought to play an important role in the extinction of conditioned fear. Here we report a series of experiments using contextual fear conditioning in which the IL is activated with the GABAa antagonist picrotoxin (Ptx) during a single extinction session in the fear context. We investigate the impact of this manipulation on subsequent extinction sessions in which Ptx is no longer present. First, we demonstrate that a single treatment with intra-IL Ptx administered in a conditioned fear context greatly accelerates the rate of extinction on the following days. Importantly, IL-Ptx also enhances extinction to a different fear context than the one in which IL-Ptx was administered. Thus, IL-Ptx primes extinction learning regardless of the fear context in which the IL was initially activated. Second, activation of the IL must occur in conjunction with a fear context in order to enhance extinction; the extinction enhancing effect is not observable if IL-Ptx is administered in a neutral context. Finally, this extinction enhancing effect is specific to the IL for it does not occur if Ptx is injected into the prelimbic region (PL) of the mPFC. The results indicate a novel persisting control of fear induced by activation of the IL and suggest that IL activation induces changes in extinction-related circuitry that prime extinction learning.


Asunto(s)
Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Miedo , Corteza Prefrontal/fisiología , Análisis de Varianza , Animales , Conducta Animal/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Extinción Psicológica/efectos de los fármacos , Miedo/efectos de los fármacos , Reacción Cataléptica de Congelación/efectos de los fármacos , Reacción Cataléptica de Congelación/fisiología , Antagonistas del GABA/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Microinyecciones/métodos , Picrotoxina/farmacología , Corteza Prefrontal/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Factores de Tiempo , Transferencia de Experiencia en Psicología/efectos de los fármacos , Transferencia de Experiencia en Psicología/fisiología
18.
Neurosci Biobehav Rev ; 131: 1037-1055, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673111

RESUMEN

Flexible calibration of threat responding in accordance with the environment is an adaptive process that allows an animal to avoid harm while also maintaining engagement of other goal-directed actions. This calibration process, referred to as threat response regulation, requires an animal to calculate the probability that a given encounter will result in a threat so they can respond accordingly. Here we review the neural correlates of two highly studied forms of threat response suppression: extinction and safety conditioning. We focus on how relative levels of certainty or uncertainty in the surrounding environment alter the acquisition and application of these processes. We also discuss evidence indicating altered threat response regulation following stress exposure, including enhanced fear conditioning, and disrupted extinction and safety conditioning. To conclude, we discuss research using an animal model of coping that examines the impact of stressor controllability on threat responding, highlighting the potential for previous experiences with control, or other forms of coping, to protect against the effects of future adversity.


Asunto(s)
Condicionamiento Clásico , Miedo , Adaptación Psicológica , Animales , Condicionamiento Clásico/fisiología , Modelos Animales de Enfermedad , Extinción Psicológica/fisiología , Miedo/fisiología , Incertidumbre
19.
Front Physiol ; 11: 524833, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469429

RESUMEN

Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 (M. vaccae), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae. Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience.

20.
J Neurosci ; 28(50): 13703-11, 2008 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19074043

RESUMEN

Safety signals are learned cues that predict stress-free periods whereas behavioral control is the ability to modify a stressor by behavioral actions. Both serve to attenuate the effects of stressors such as uncontrollable shocks. Internal and external cues produced by a controlling behavior are followed by a stressor-free interval, and so it is possible that safety learning is fundamental to the effect of control. If this is the case then behavioral control and safety should recruit the same neural machinery. Interestingly, safety signals that prevented a behavioral outcome of stressor exposure that is also blocked by control (reduced social exploration) failed to inhibit activity in the dorsal raphé nucleus or use the ventromedial prefrontal cortex, the mechanisms by which behavioral control operates. However, bilateral lesions to a region of posterior insular cortex, termed the "sensory insula," prevented the effect of safety but not of behavioral control, providing a double-dissociation. These results indicate that stressor-modulators can recruit distinct neural circuitry and imply a critical role of the sensory insula in safety learning.


Asunto(s)
Conducta Animal/fisiología , Miedo/fisiología , Corteza Somatosensorial/fisiología , Estrés Psicológico/metabolismo , Animales , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Inmunohistoquímica , Masculino , Microdiálisis , Ratas , Ratas Sprague-Dawley , Seguridad , Serotonina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA