Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Biol Chem ; 300(6): 107354, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718862

RESUMEN

The nucleocapsid protein (N) of SARS-CoV-2 is essential for virus replication, genome packaging, evading host immunity, and virus maturation. N is a multidomain protein composed of an independently folded monomeric N-terminal domain that is the primary site for RNA binding and a dimeric C-terminal domain that is essential for efficient phase separation and condensate formation with RNA. The domains are separated by a disordered Ser/Arg-rich region preceding a self-associating Leu-rich helix. Phosphorylation in the Ser/Arg region in infected cells decreases the viscosity of N:RNA condensates promoting viral replication and host immune evasion. The molecular level effect of phosphorylation, however, is missing from our current understanding. Using NMR spectroscopy and analytical ultracentrifugation, we show that phosphorylation destabilizes the self-associating Leu-rich helix 30 amino-acids distant from the phosphorylation site. NMR and gel shift assays demonstrate that RNA binding by the linker is dampened by phosphorylation, whereas RNA binding to the full-length protein is not significantly affected presumably due to retained strong interactions with the primary RNA-binding domain. Introducing a switchable self-associating domain to replace the Leu-rich helix confirms the importance of linker self-association to droplet formation and suggests that phosphorylation not only increases solubility of the positively charged elongated Ser/Arg region as observed in other RNA-binding proteins but can also inhibit self-association of the Leu-rich helix. These data highlight the effect of phosphorylation both at local sites and at a distant self-associating hydrophobic helix in regulating liquid-liquid phase separation of the entire protein.


Asunto(s)
Proteínas de la Nucleocápside de Coronavirus , SARS-CoV-2 , Arginina/química , Arginina/metabolismo , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/genética , COVID-19/virología , COVID-19/metabolismo , Espectroscopía de Resonancia Magnética , Nucleocápside/metabolismo , Nucleocápside/química , Proteínas de la Nucleocápside/metabolismo , Proteínas de la Nucleocápside/química , Separación de Fases , Fosfoproteínas/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Fosforilación , Unión Proteica , ARN Viral/metabolismo , ARN Viral/química , ARN Viral/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Serina/metabolismo , Serina/química
2.
Trends Biochem Sci ; 45(5): 375-384, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32311332

RESUMEN

Hub proteins are important elements of interactomes within an organism; they bind diverse partners, display significant pleiotropy, and connect many cellular systems. Static hubs interact with their partners simultaneously, while dynamic hubs bind different partners at different locations and times. Although this distinguishes some features of hub protein/partner interactions, the increasing literature requires an expanded categorization of molecular and functional properties. Here, we focus on dynein light chain LC8 as a canonical example of dynamic hub proteins to develop a conceptual residue-level framework for hub-partner interactions and functions. We propose a new class of structural linear motif-binding hub proteins (LMB-hubs) with key common features. LMB-hubs have structural plasticity yet conserved interfaces, can function as integral members of large multimolecular assemblies, and are self-regulating.


Asunto(s)
Dineínas/metabolismo , Bases de Datos de Proteínas , Unión Proteica , Dominios Proteicos
3.
PLoS Comput Biol ; 19(4): e1011059, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083599

RESUMEN

Multistep protein-protein interactions underlie most biological processes, but their characterization through methods such as isothermal titration calorimetry (ITC) is largely confined to simple models that provide little information on the intermediate, individual steps. In this study, we primarily examine the essential hub protein LC8, a small dimer that binds disordered regions of 100+ client proteins in two symmetrical grooves at the dimer interface. Mechanistic details of LC8 binding have remained elusive, hampered in part by ITC data analyses employing simple models that treat bivalent binding as a single event with a single binding affinity. We build on existing Bayesian ITC approaches to quantify thermodynamic parameters for multi-site binding interactions impacted by significant uncertainty in protein concentration. Using a two-site binding model, we identify positive cooperativity with high confidence for LC8 binding to multiple client peptides. In contrast, application of an identical model to the two-site binding between the coiled-coil NudE dimer and the intermediate chain of dynein reveals little evidence of cooperativity. We propose that cooperativity in the LC8 system drives the formation of saturated induced-dimer structures, the functional units of most LC8 complexes. In addition to these system-specific findings, our work advances general ITC analysis in two ways. First, we describe a previously unrecognized mathematical ambiguity in concentrations in standard binding models and clarify how it impacts the precision with which binding parameters are determinable in cases of high uncertainty in analyte concentrations. Second, building on observations in the LC8 system, we develop a system-agnostic heat map of practical parameter identifiability calculated from synthetic data which demonstrates that the ability to determine microscopic binding parameters is strongly dependent on both the parameters themselves and experimental conditions. The work serves as a foundation for determination of multi-step binding interactions, and we outline best practices for Bayesian analysis of ITC experiments.


Asunto(s)
Dineínas , Péptidos , Humanos , Teorema de Bayes , Unión Proteica , Dineínas/química , Péptidos/química
4.
J Biol Chem ; 298(12): 102613, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36265582

RESUMEN

Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of 15N- (and 13C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic ΔserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) ΔserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain ≥10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with 15N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses.


Asunto(s)
COVID-19 , Humanos , Fosfoserina/metabolismo , SARS-CoV-2/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas Recombinantes/química , Serina/genética , Serina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
5.
Biophys J ; 121(23): 4433-4442, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36335430

RESUMEN

Tumor suppressor p53 binding protein 1 (53BP1) is a scaffolding protein involved in poly-ADP ribose polymerase inhibitor hypersensitivity in BRCA1-negative cancers. 53BP1 plays a critical role in the DNA damage response and relies on its oligomerization to create foci that promote repair of DNA double-strand breaks. Previous work shows that mutation of either the oligomerization domain or the dynein light chain 8 (LC8)-binding sites of 53BP1 results in reduced accumulation of 53BP1 at double-strand breaks. Mutation of both abolishes focus formation almost completely. Here, we show that, contrary to current literature, 53BP1 contains three LC8-binding sites, all of which are conserved in mammals. Isothermal titration calorimetry measuring binding affinity of 53BP1 variants with LC8 shows that the third LC8-binding site has a high affinity and can bind LC8 in the absence of other sites. NMR titrations confirm that the third site binds LC8 even in variants that lack the other LC8-binding sites. The third site is the closest to the oligomerization domain of 53BP1, and its discovery would challenge our current understanding of the role of LC8 in 53BP1 function.


Asunto(s)
Proteína 1 de Unión al Supresor Tumoral P53
6.
Biophys J ; 120(14): 2890-2901, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33794152

RESUMEN

The nucleocapsid phosphoprotein N plays critical roles in multiple processes of the severe acute respiratory syndrome coronavirus 2 infection cycle: it protects and packages viral RNA in N assembly, interacts with the inner domain of spike protein, binds to structural membrane (M) protein during virion packaging and maturation, and to proteases causing replication of infective virus particle. Even with its importance, very limited biophysical studies are available on the N protein because of its high level of disorder, high propensity for aggregation, and high susceptibility for autoproteolysis. Here, we successfully prepare the N protein and a 1000-nucleotide fragment of viral RNA in large quantities and purity suitable for biophysical studies. A combination of biophysical and biochemical techniques demonstrates that the N protein is partially disordered and consists of an independently folded RNA-binding domain and a dimerization domain, flanked by disordered linkers. The protein assembles as a tight dimer with a dimerization constant of sub-micromolar but can also form transient interactions with other N proteins, facilitating larger oligomers. NMR studies on the ∼100-kDa dimeric protein identify a specific domain that binds 1-1000-nt RNA and show that the N-RNA complex remains highly disordered. Analytical ultracentrifugation, isothermal titration calorimetry, multiangle light scattering, and cross-linking experiments identify a heterogeneous mixture of complexes with a core corresponding to at least 70 dimers of N bound to 1-1000 RNA. In contrast, very weak binding is detected with a smaller construct corresponding to the RNA-binding domain using similar experiments. A model that explains the importance of the bivalent structure of N to its binding on multivalent sites of the viral RNA is presented.


Asunto(s)
COVID-19 , SARS-CoV-2 , Proteínas de la Nucleocápside de Coronavirus , Humanos , Nucleocápside/metabolismo , Fosfoproteínas , Unión Proteica , ARN Viral/genética , ARN Viral/metabolismo
7.
J Biol Chem ; 295(15): 4912-4922, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32139510

RESUMEN

Dynein light chain 8 (LC8) interacts with intrinsically disordered proteins (IDPs) and influences a wide range of biological processes. It is becoming apparent that among the numerous IDPs that interact with LC8, many contain multiple LC8-binding sites. Although it is established that LC8 forms parallel IDP duplexes with some partners, such as nucleoporin Nup159 and dynein intermediate chain, the molecular details of these interactions and LC8's interactions with other diverse partners remain largely uncharacterized. LC8 dimers could bind in either a paired "in-register" or a heterogeneous off-register manner to any of the available sites on a multivalent partner. Here, using NMR chemical shift perturbation, analytical ultracentrifugation, and native electrospray ionization MS, we show that LC8 forms a predominantly in-register complex when bound to an IDP domain of the multivalent regulatory protein ASCIZ. Using saturation transfer difference NMR, we demonstrate that at substoichiometric LC8 concentrations, the IDP domain preferentially binds to one of the three LC8 recognition motifs. Further, the differential dynamic behavior for the three sites and the size of the fully bound complex confirmed an in-register complex. Dynamics measurements also revealed that coupling between sites depends on the linker length separating these sites. These results identify linker length and motif specificity as drivers of in-register binding in the multivalent LC8-IDP complex assembly and the degree of compositional and conformational heterogeneity as a promising emerging mechanism for tuning of binding and regulation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Dineínas/química , Dineínas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Modelos Moleculares , Conformación Proteica , Homología de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética
8.
Biophys J ; 119(5): 950-965, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32814057

RESUMEN

Cytoplasmic dynein is a eukaryotic motor protein complex that, along with its regulatory protein dynactin, is essential to the transport of organelles within cells. The interaction of dynein with dynactin is regulated by binding between the intermediate chain (IC) subunit of dynein and the p150Glued subunit of dynactin. Even though in the rat versions of these proteins this interaction primarily involves the single α-helix region at the N-terminus of the IC, in Drosophila and yeast ICs the removal of a nascent helix (H2) downstream of the single α-helix considerably diminishes IC-p150Glued complex stability. We find that for ICs from various species, there is a correlation between disorder in H2 and its contribution to binding affinity, and that sequence variations in H2 that do not change the level of disorder show similar binding behavior. Analysis of the structure and interactions of the IC from Chaetomium thermophilum demonstrates that the H2 region of C. thermophilum IC has a low helical propensity and establishes that H2 binds directly to the coiled-coil 1B (CC1B) domain of p150Glued, thus explaining why H2 is necessary for tight binding. Isothermal titration calorimetry, circular dichroism, and NMR studies of smaller CC1B constructs localize the region of CC1B most essential for a tight interaction with IC. These results suggest that it is the level of disorder in H2 of IC along with its charge, rather than sequence specificity, that underlie its importance in initiating tight IC-p150Glued complex formation. We speculate that the nascent H2 helix may provide conformational flexibility to initiate binding, whereas those species that have a fully folded H2 have co-opted an alternative mechanism for promoting p150Glued binding.


Asunto(s)
Dineínas , Proteínas Asociadas a Microtúbulos , Animales , Chaetomium , Complejo Dinactina , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Estructura Terciaria de Proteína , Ratas
10.
Biochemistry ; 58(40): 4112-4124, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31490062

RESUMEN

Deamidation is a major age-related modification in the human lens that is highly prevalent in crystallins isolated from the insoluble fraction of cataractous lenses and also causes protein aggregation in vitro. However, the mechanism by which deamidation causes proteins to become insoluble is not known because only subtle structural changes were observed in vitro. We have identified Asn14 and Asn76 of γS-crystallin as highly deamidated in insoluble proteins isolated from aged lenses. These sites are on the surface of the N-terminal domain and were mimicked by replacing the Asn with Asp residues in order to generate recombinant human γS and deamidated mutants. Both N14D and N76D had increased light scattering compared to wild-type γS (WT) and increased aggregation during thermal-induced denaturation. Aggregation was enhanced by oxidized glutathione, suggesting deamidation may increase susceptibility to form disulfide bonds. These changes were correlated to changes in protein dynamics determined by NMR spectroscopy. Heteronuclear NMR spectroscopy was used to measure amide hydrogen exchange and 15N relaxation dynamics to identify regions with increased dynamics compared to γS WT. Residue-specific changes in solvent accessibility and dynamics were both near and distant from the sites of deamidation, suggesting that deamidation had both local and global effects on the protein structure at slow (ms to s) and fast (µs to ps) time scales. Thus, a potential mechanism for γS deamidation-induced insolubilization in cataractous lenses is altered dynamics due to local regions of unfolding and increased flexibility in both the N- and C-terminal domains particularly at surface helices. This conformational flexibility increases the likelihood of aggregation, which would be enhanced in the oxidizing cytoplasm of the aged and cataractous lens. The NMR data combined with the in vivo insolubility and in vitro aggregation findings support a model that deamidation drives changes in protein dynamics that facilitate protein aggregation associated with cataracts.


Asunto(s)
Catarata/fisiopatología , Multimerización de Proteína , gamma-Cristalinas/metabolismo , Anciano de 80 o más Años , Asparagina/química , Humanos , Hidrólisis , Conformación Proteica en Hélice alfa , Desplegamiento Proteico , Dispersión de Radiación , gamma-Cristalinas/química
11.
Semin Cell Dev Biol ; 37: 20-5, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25263009

RESUMEN

Intrinsically disordered proteins (IDPs) are prevalent in macromolecular assemblies and are thought to mediate protein recognition in complex regulatory processes and signaling pathways. The formation of a polybivalent scaffold is a key process by which IDPs drive early steps in macromolecular assemblies. Three intrinsically disordered proteins, IC, Swallow and Nup159, are core components, respectively, of cytoplasmic dynein, bicoid mRNA localization apparatus, and nuclear pore complexes. In all three systems, the hub protein LC8 recognizes on the IDP, short linear motifs that are fully disordered in the apo form, but adopt a ß-strand when bound to LC8. The IDP/LC8 complex forms a bivalent scaffold primed to bind additional bivalent ligands. Scaffold formation also promotes self-association and/or higher order organization of the IDP components at a site distant from LC8 binding. Rigorous thermodynamic analyses imply that association of additional bivalent ligands is driven by entropic effects where the first binding event is weak but subsequent binding of additional ligands occurs with higher affinity. Here, we review specific examples of macromolecular assemblies in which polybivalency of aligned IDP duplexes not only enhances binding affinity and results in formation of a stable complex but also compensates unfavorable steric and enthalpic interactions. We propose that polybivalent scaffold assembly involving IDPs and LC8-like proteins is a general process in the cell biology of a class of multi-protein structures that are stable yet fine-tuned for diverse cellular requirements.


Asunto(s)
Dineínas Citoplasmáticas/química , Dineínas Citoplasmáticas/metabolismo , Animales , Fenómenos Fisiológicos Celulares , Proteínas Intrínsecamente Desordenadas/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Transducción de Señal , Termodinámica
12.
Biochemistry ; 56(35): 4656-4666, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28792212

RESUMEN

LC8 is a ubiquitous hub protein that binds intrinsically disordered proteins and promotes their assembly into higher-order complexes. A common feature among the more than 100 essential LC8 binding proteins is that in the 10-12-amino acid recognition sequence there is a conserved QT motif but variable amino acids N- and C-terminal to the QT pair. The sequence diversity among LC8 binding partners implies that structural factors also contribute to specificity. To investigate whether one such factor is the transient secondary structure favored by an LC8 binding sequence, we report here a molecular ensemble description of ICTL, a domain of the dynein intermediate chain that includes binding sites for light chains LC8 and Tctex1. Nuclear magnetic resonance secondary chemical shifts and residual dipolar coupling values combined with ensemble generation and selection algorithms indicate a deviation from statistical (random) coil behavior with an elevated population of polyproline II (PPII) conformations for the ICTL regions that bind LC8 and Tctex1. Independent measurements of one- and three-bond scalar couplings confirm the PPII transient secondary structure propensity. Given that in the IC/Tctex1/LC8 ternary complex ICTL forms a ß-strand at the interface of Tctex1 and LC8, we hypothesize that a PPII conformation may facilitate its initial docking and insertion into the binding cleft of the ß-sheet LC8 dimer interface. Molecular ensemble calculations for intrinsically disordered LC8 binding partners also reveal PPII conformational sampling within and proximate to the LC8 recognition motifs, suggesting that a preference for a PPII conformation is general for LC8 binding partners.


Asunto(s)
Dineínas Citoplasmáticas/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas Asociadas a Microtúbulos/química , Proteínas de Complejo Poro Nuclear/química , Conformación Proteica en Lámina beta , Proteínas de Saccharomyces cerevisiae/química
13.
Biochim Biophys Acta ; 1860(1 Pt B): 304-14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26145577

RESUMEN

BACKGROUND: Lens transparency is due to the ordered arrangement of the major structural proteins, called crystallins. ßB2 crystallin in the lens of the eye readily forms dimers with other ß-crystallin subunits, but the resulting heterodimer structures are not known and were investigated in this study. METHODS: Structures of ßA3 and ßB2 crystallin homodimers and the ßA3/ßB2 crystallin heterodimers were probed by measuring changes in solvent accessibility using hydrogen-deuterium exchange with mass spectrometry. We further mimicked deamidation in ßB2 and probed the effect on the ßA3/ßB2 heterodimer. Results were confirmed with chemical crosslinking and NMR. RESULTS: Both ßA3 and ßB2 had significantly decreased deuterium levels in the heterodimer compared to their respective homodimers, suggesting that they had less solvent accessibility and were more compact in the heterodimer. The compact structure of ßB2 was supported by the identification of chemical crosslinks between lysines in ßB2 within the heterodimer that were inconsistent with ßB2's extended homodimeric structure. The compact structure of ßA3 was supported by an overall decrease in mobility of ßA3 in the heterodimer detected by NMR. In ßB2, peptides 70-84 and 121-134 were exposed in the homodimer, but buried in the heterodimer with ≥50% decreases in deuterium levels. Homologous peptides in ßA3, 97-109 and 134-149, had 25-50% decreases in deuterium levels in the heterodimer. These peptides are probable sites of interaction between ßB2 and ßA3 and are located at the predicted interface between subunits with bent linkers. Deamidation at Q184 in ßB2 at this predicted interface led to a less compact ßB2 in the heterodimer. The more compact structure of the ßA3/ßB2 heterodimer was also more heat stable than either of the homodimers. CONCLUSIONS: The major structural proteins in the lens, the ß-crystallins, are not static, but dynamic in solution, with differences in accessibility between the homo-and hetero-dimers. This structural flexibility, particularly of ßB2, may facilitate formation of different size higher-ordered structures found in the transparent lens. GENERAL SIGNIFICANCE: Understanding complex hetero-oligomer interactions between ß-crystallins in normal lens and how these interactions change during aging is fundamental to understanding the cause of cataracts. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.


Asunto(s)
Amidas/química , Medición de Intercambio de Deuterio/métodos , Cristalino/química , Multimerización de Proteína , beta-Cristalinas/química , beta-Cristalinas/ultraestructura , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dimerización , Humanos , Técnicas de Sonda Molecular , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica
14.
Biochemistry ; 55(1): 199-209, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26652654

RESUMEN

LC8 is a dimeric hub protein involved in a large number of interactions central to cell function. It binds short linear motifs--usually containing a Thr-Gln-Thr (TQT) triplet--in intrinsically disordered regions of its binding partners, some of which have several LC8 recognition motifs in tandem. Hallmarks of the 7-10 amino acid motif are a high variability of LC8 binding affinity and extensive sequence permutation outside the TQT triplet. To elucidate the molecular basis of motif recognition, we use a 69-residue segment of the human Chica spindle adaptor protein that contains four putative TQT recognition motifs in tandem. NMR-derived secondary chemical shifts and relaxation properties show that the Chica LC8 binding domain is essentially disordered with a dynamically restricted segment in one linker between motifs. Calorimetry of LC8 binding to synthetic motif-mimicking peptides shows that the first motif dominates LC8 recruitment. Crystal structures of the complexes of LC8 bound to each of two motif peptides show highly ordered and invariant TQT-LC8 interactions and more flexible and conformationally variable non-TQT-LC8 interactions. These data highlight rigidity in both LC8 residues that bind TQT and in the TQT portion of the motif as an important new characteristic of LC8 recognition. On the basis of these data and others in the literature, we propose that LC8 recognition is based on rigidly fixed interactions between LC8 and TQT residues that act as an anchor, coupled with inherently flexible interactions between LC8 and non-TQT residues. The "anchored flexibility" model explains the requirement for the TQT triplet and the ability of LC8 to accommodate a large variety of motif sequences and affinities.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Dineínas Citoplasmáticas/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dineínas Citoplasmáticas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Alineación de Secuencia
15.
J Biol Chem ; 290(39): 23863-74, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26253171

RESUMEN

Intrinsically disordered protein (IDP) duplexes composed of two IDP chains cross-linked by bivalent partner proteins form scaffolds for assembly of multiprotein complexes. The N-terminal domain of dynein intermediate chain (N-IC) is one such IDP that forms a bivalent scaffold with multiple dynein light chains including LC8, a hub protein that promotes duplex formation of diverse IDP partners. N-IC also binds a subunit of the dynein regulator, dynactin. Here we characterize interactions of a yeast ortholog of N-IC (N-Pac11) with yeast LC8 (Dyn2) or with the intermediate chain-binding subunit of yeast dynactin (Nip100). Residue level changes in Pac11 structure are monitored by NMR spectroscopy, and binding energetics are monitored by isothermal titration calorimetry (ITC). N-Pac11 is monomeric and primarily disordered except for a single α-helix (SAH) at the N terminus and a short nascent helix, LH, flanked by the two Dyn2 recognition motifs. Upon binding Dyn2, the only Pac11 residues making direct protein-protein interactions are in and immediately flanking the recognition motifs. Dyn2 binding also orders LH residues of Pac11. Upon binding Nip100, only Pac11 SAH residues make direct protein-protein interactions, but LH residues at a distant sequence position and L1 residues in an adjacent linker are also ordered. The long distance, ligand-dependent ordering of residues reveals new elements of dynamic structure within IDP linker regions.


Asunto(s)
Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Complejo Dinactina , Dineínas/genética , Proteínas Asociadas a Microtúbulos/genética , Complejos Multiproteicos/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
J Biol Chem ; 289(37): 25946-56, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25063993

RESUMEN

Pyrenophora tritici-repentis Ptr ToxB (ToxB) is a proteinaceous host-selective toxin produced by Pyrenophora tritici-repentis (P. tritici-repentis), a plant pathogenic fungus that causes the disease tan spot of wheat. One feature that distinguishes ToxB from other host-selective toxins is that it has naturally occurring homologs in non-pathogenic P. tritici-repentis isolates that lack toxic activity. There are no high-resolution structures for any of the ToxB homologs, or for any protein with >30% sequence identity, and therefore what underlies activity remains an open question. Here, we present the NMR structures of ToxB and its inactive homolog Ptr toxb. Both proteins adopt a ß-sandwich fold comprising three strands in each half that are bridged together by two disulfide bonds. The inactive toxb, however, shows higher flexibility localized to the sequence-divergent ß-sandwich half. The absence of toxic activity is attributed to a more open structure in the vicinity of one disulfide bond, higher flexibility, and residue differences in an exposed loop that likely impacts interaction with putative targets. We propose that activity is regulated by perturbations in a putative active site loop and changes in dynamics distant from the site of activity. Interestingly, the new structures identify AvrPiz-t, a secreted avirulence protein produced by the rice blast fungus, as a structural homolog to ToxB. This homology suggests that fungal proteins involved in either disease susceptibility such as ToxB or resistance such as AvrPiz-t may have a common evolutionary origin.


Asunto(s)
Proteínas Fúngicas/química , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Cristalografía por Rayos X , Evolución Molecular , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/toxicidad , Espectroscopía de Resonancia Magnética , Pliegue de Proteína , Estructura Secundaria de Proteína , Soluciones/química , Triticum/genética
17.
J Biol Chem ; 288(4): 2614-22, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23223634

RESUMEN

Dyn2 is the yeast ortholog of the molecular hub LC8, which binds disordered proteins and promotes their self-association and higher order assembly. Dyn2 is proposed to dimerize and stabilize the Nup82-Nsp1-Nup159 complex of the nuclear pore assembly through its interaction with nucleoporin Nup159. Nup159 has six LC8 recognition motifs separated by short linkers. NMR experiments reported here show that the Dyn2 binding domain of Nup159 is intrinsically disordered and that binding of one equivalent of Dyn2 dimer aligns two Nup159 chains along the full Dyn2 binding domain to form a bivalent scaffold that promotes binding of other Dyn2 dimers. Isothermal titration calorimetry of Dyn2 binding to Nup constructs of increasing lengths determine that the third LC8 recognition motifs does not bind Dyn2. A new approach to identifying active LC8 recognition motifs based on NMR-detected ß-sheet propensities is presented. Isothermal titration calorimetry experiments also show that, due to unfavorable entropy changes, a Nup-Dyn2 complex with three Dyn2 dimers is more stable than the wild-type complex with five Dyn2 dimers. The calorimetric results argue that, from a thermodynamics perspective, only three Dyn2 dimers are needed for optimal stability and suggest that the evolutionary adaptation of multiple tandem LC8 recognition motifs imparts to the complex other properties such as rigidity and a kink in the rod-like structure. These findings extend the repertoire of functions of intrinsically disordered protein to fine-tuning and versatile assembly of higher order macromolecular complexes.


Asunto(s)
Dineínas/química , Proteínas de Complejo Poro Nuclear/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Calorimetría/métodos , Clonación Molecular , Dimerización , Cinética , Espectroscopía de Resonancia Magnética/métodos , Unión Proteica , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Termodinámica
18.
Biochemistry ; 52(35): 6011-20, 2013 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-23914803

RESUMEN

Cell functions depend on the collective activity of protein networks within which a few proteins, called hubs, participate in a large number of interactions. Dynein light chain LC8, first discovered as a subunit of the motor protein dynein, is considered to have a role broader than that of dynein, and its participation in diverse systems fits the description of a hub. Among its partners is Swallow with which LC8 is essential for proper localization of bicoid mRNA at the anterior cortex of Drosophila oocytes. Why LC8 is essential in this process is not clear, but emerging evidence suggests that LC8 functions by promoting self-association and/or structural organization of its diverse binding partners. This work addresses the energetics and structural features of LC8-induced Swallow self-association distant from LC8 binding. Mutational design based on a hypothetical helical wheel, intermonomer nuclear Overhauser effects assigned to residues expected at interface positions, and circular dichroism spectral characteristics indicate that the LC8-promoted dimer of Swallow is a coiled coil. Secondary chemical shifts and (15)N backbone relaxation identify the boundaries and distinguishing structural features of the coiled coil. Thermodynamic analysis of Swallow polypeptides designed to decouple self-association from LC8 binding reveals that the higher binding affinity of the engineered bivalent Swallow is of purely entropic origin and that the linker separating the coiled coil from the LC8 binding site remains disordered. We speculate that the LC8-promoted coiled coil is critical for bicoid mRNA localization because it favors structural organization of Swallow, which except for the central LC8-promoted coiled coil is primarily disordered.


Asunto(s)
Proteínas de Drosophila/química , Dineínas/química , Proteínas de Unión al ARN/química , Animales , Calorimetría , Cromatografía en Gel , Dicroismo Circular , Drosophila , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Dispersión de Radiación
19.
J Biol Chem ; 287(30): 24884-93, 2012 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-22669947

RESUMEN

The functional diversity of cytoplasmic dynein is in part attributed to multiple interactions between noncatalytic dynein subunits and an array of regulatory proteins. This study focuses on the interaction between the dynein intermediate chain subunit (IC) and a dynein regulator protein (NudE). We use isothermal titration calorimetry and NMR spectroscopy to map their interacting sections to their respective N-terminal domains, which are predicted to form dimeric coiled-coils. Interestingly, the specific residues within IC that interact with NudE are a subset of the bi-segmental binding region reported for p150(Glued), a subunit of the dynein activator protein dynactin. Although the IC binding domains of both NudE and p150(Glued) form dimeric coiled-coils and bind IC at a common site, we observe distinct binding modes for each regulatory protein: 1) NudE binds region 1 of the bi-segmental binding footprint of p150(Glued), whereas p150(Glued) requires regions 1 and 2 to match the binding affinity of NudE with region 1 alone. 2) Compared with unbound IC, NudE-bound IC shows a slight increase in flexibility in region 2, in contrast to the increase in ordered structure observed for p150(Glued)-bound IC (Morgan, J. L., Song, Y., and Barbar, E. (2011) J. Biol. Chem. 286, 39349-39359). 3) Although NudE has a higher affinity for the common binding segment on IC, when all three proteins are in solution, IC preferentially binds p150(Glued). These results underscore the importance of a bi-segmental binding region of IC and disorder in region 2 and flanking linkers in selecting which regulatory protein binds IC.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster , Complejo Dinactina , Dineínas/química , Dineínas/genética , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Terciaria de Proteína
20.
Methods Mol Biol ; 2623: 241-256, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36602690

RESUMEN

Cytoplasmic dynein complexes play crucial roles in intracellular transport of cellular organelles. While the motor domain of dynein is well characterized by techniques such as X-ray crystallography and cryo-electron microscopy (Cryo-EM), structural representations of dynein usually include only the more packed and easily resolved regions and omit the long flexible and poorly structured regions. One such flexible region is the N-terminal half of the intermediate chain (IC), which contains almost 300 amino acids that are predicted to be disordered. This level of disorder makes IC impossible to study by X-ray crystallography and Cryo-EM, but amenable to study by solution nuclear magnetic resonance (NMR), a powerful technique that can elucidate residue-specific information in a dynamic ensemble of structures, and transient binding interactions of associated proteins. Here, we describe the methods we use to characterize flexible and disordered proteins including protein expression, purification, sample preparation, and NMR data acquisition and analysis.


Asunto(s)
Dineínas , Dineínas/metabolismo , Microscopía por Crioelectrón , Unión Proteica , Resonancia Magnética Nuclear Biomolecular/métodos , Conformación Molecular , Cristalografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA