Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Biol Sci ; 289(1989): 20221431, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36541169

RESUMEN

Coral reefs are increasingly ecologically destabilized across the globe due to climate change. Behavioural plasticity in corallivore behaviour and short-term trophic ecology in response to bleaching events may influence the extent and severity of coral bleaching and subsequent recovery potential, yet our understanding of these interactions in situ remains unclear. Here, we investigated interactions between corallivory and coral bleaching during a severe high thermal event (10.3-degree heating weeks) in Belize. We found that parrotfish changed their grazing behaviour in response to bleaching by selectively avoiding bleached Orbicella spp. colonies regardless of bleaching severity or coral size. For bleached corals, we hypothesize that this short-term respite from corallivory may temporarily buffer coral energy budgets by not redirecting energetic resources to wound healing, and may therefore enable compensatory nutrient acquisition. However, colonies that had previously been heavily grazed were also more susceptible to bleaching, which is likely to increase mortality risk. Thus, short-term respite from corallivory during bleaching may not be sufficient to functionally rescue corals during prolonged bleaching. Such pairwise interactions and behavioural shifts in response to disturbance may appear small scale and short term, but have the potential to fundamentally alter ecological outcomes, especially in already-degraded ecosystems that are vulnerable and sensitive to change.


Asunto(s)
Antozoos , Arrecifes de Coral , Animales , Ecosistema , Antozoos/fisiología , Cambio Climático , Belice
2.
Sci Rep ; 12(1): 11238, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851041

RESUMEN

Vertebrate growth can be phenotypically plastic in response to predator-prey and competitive interactions. It is unknown however, if it can be plastic in response to mutualistic interactions. Here we investigate plasticity of vertebrate growth in response to variation in mutualistic interactions, using clown anemonefish and their anemone hosts. In the wild, there is a positive correlation between the size of the fish and the size of the anemone, but the cause of this correlation is unknown. Plausible hypotheses are that fish exhibit growth plasticity in response to variation in food or space provided by the host. In the lab, we pair individuals with real anemones of various sizes and show that fish on larger anemones grow faster than fish on smaller anemones. By feeding the fish a constant food ration, we exclude variation in food availability as a cause. By pairing juveniles with artificial anemones of various sizes, we exclude variation in space availability as a single cause. We argue that variation in space availability in conjunction with host cues cause the variability in fish growth. By adjusting their growth, anemonefish likely maximize their reproductive value given their anemone context. More generally, we demonstrate vertebrate growth plasticity in response to variation in mutualistic interactions.


Asunto(s)
Anemone , Anémonas de Mar , Animales , Peces , Reproducción , Anémonas de Mar/fisiología , Simbiosis/fisiología
3.
Commun Biol ; 3(1): 649, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159133

RESUMEN

Individuals that forgo their own reproduction in animal societies represent an evolutionary paradox because it is not immediately apparent how natural selection can preserve the genes that underlie non-breeding strategies. Cooperative breeding theory provides a solution to the paradox: non-breeders benefit by helping relatives and/or inheriting breeding positions; non-breeders do not disperse to breed elsewhere because of ecological constraints. However, the question of why non-breeders do not contest to breed within their group has rarely been addressed. Here, we use a wild population of clownfish (Amphiprion percula), where non-breeders wait peacefully for years to inherit breeding positions, to show non-breeders will disperse when ecological constraints (risk of mortality during dispersal) are experimentally weakened. In addition, we show non-breeders will contest when social constraints (risk of eviction during contest) are experimentally relaxed. Our results show it is the combination of ecological and social constraints that promote the evolution of non-breeding strategies. The findings highlight parallels between, and potential for fruitful exchange between, cooperative breeding theory and economic bargaining theory: individuals will forgo their own reproduction and wait peacefully to inherit breeding positions (engage in cooperative options) when there are harsh ecological constraints (poor outside options) and harsh social constraints (poor inside options).


Asunto(s)
Evolución Biológica , Ecosistema , Perciformes/genética , Reproducción/genética , Selección Genética , Animales , Perciformes/fisiología , Reproducción/fisiología , Conducta Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA