Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 34(44): 13296-13304, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30299102

RESUMEN

Dibucaine (DBC) is one of the most potent long-acting local anesthetics, but it also has significant toxic side effects and low water solubility. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have been proposed as drug-delivery systems to increase the bioavailability of local anesthetics. The purpose of the present study was to characterize SLNs and NLCs composed of cetyl palmitate or myristyl myristate, a mixture of capric and caprylic acids (for NLCs only) plus Pluronic F68 prepared for the encapsulation of DBC. We intended to provide a careful structural characterization of the nanoparticles to identify the relevant architectural parameters that lead to the desirable biological response. Initially, SLNs and NLCs were assessed in terms of their size distribution, morphology, surface charge, and drug loading. Spectroscopic techniques (infrared spectroscopy and electron paramagnetic resonance, EPR) plus small-angle X-ray scattering (SAXS) provided information on the interactions between nanoparticle components and their structural organization. The sizes of nanoparticles were in the 180 nm range with low polydispersity and negative zeta values (-25 to -46 mV). The partition coefficient of DBC between nanoparticles and water at pH 8.2 was very high (>104). EPR (with doxyl-stearate spin labels) data revealed the existence of lamellar arrangements inside the lipid nanoparticles, which was also confirmed by SAXS experiments. Moreover, the addition of DBC increased the molecular packing of both SLN and NLC lipids, indicative of DBC insertion between the lipids, in the milieu assessed by spin labels. Such structural information brings insights into understanding the molecular organization of these versatile drug-delivery systems which have already demonstrated their potential for therapeutic applications in pain control.


Asunto(s)
Anestésicos Locales/química , Dibucaína/química , Portadores de Fármacos/química , Nanopartículas/química , Espectroscopía de Resonancia por Spin del Electrón , Miristatos/química , Nanopartículas/ultraestructura , Palmitatos/química , Tamaño de la Partícula , Poloxámero/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
2.
Eur J Pharm Sci ; 93: 192-202, 2016 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-27543066

RESUMEN

In dental practice, local anesthesia causes pain, fear, and stress, and is frequently the reason that patients abandon treatment. Topical anesthetics are applied in order to minimize the discomfort caused by needle insertion and injection, and to reduce the symptoms of superficial trauma at the oral mucosa, but there are still no efficient commercially available formulations. Factorial design is a multivariate data analysis procedure that can be used to optimize the manufacturing processes of lipid nanocarriers, providing valuable information and minimizing development time. This work describes the use of factorial design to optimize a process for the preparation of nanostructured lipid carriers (NLC) based on cetyl palmitate and capric/caprylic triglycerides as structural lipids and Pluronic 68 as the colloidal stabilizer, for delivery of the local anesthetics lidocaine and prilocaine (both at 2.5%). The factors selected were the excipient concentrations, and three different responses were followed: particle size, polydispersity index and zeta potential. The encapsulation efficiency of the most effective formulations (NLC 2, 4, and 6) was evaluated by the ultrafiltration/centrifugation method. The formulations that showed the highest levels of encapsulation were tested using in vitro release kinetics experiments with Franz diffusion cells. The NLC6 formulation exhibited the best sustained release profile, with 59% LDC and 66% PLC released after 20h. This formulation was then characterized using different techniques (IR-ATR, DSC, DRX, TEM, and NTA) to obtain information about its molecular organization and its physicochemical stability, followed during 14months of storage at 25°C. This thorough pre-formulation study represents an important advance towards the development of an efficient pre-anesthetic for use in dentistry.


Asunto(s)
Anestésicos Locales/química , Portadores de Fármacos/química , Lidocaína/química , Nanoestructuras/química , Prilocaína/química , Administración Tópica , Química Farmacéutica , Liberación de Fármacos , Lípidos/química
3.
Expert Opin Drug Deliv ; 10(11): 1551-63, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23937107

RESUMEN

INTRODUCTION: Dermal and transdermal drug delivery systems offer the possibility to control the release of the drug for an extended period of time. In particular, skin-delivery of local anesthetics (LA) is one of the most important strategies to increase the local drug concentration and to reduce systemic adverse reactions. AREAS COVERED: During the development phase of new formulations for skin-delivery of LA one should consider a set of desirable features such providing suitable adhesion, easy application/removal and also to be biocompatible, biodegradable and non-toxic. This review emphasizes the main strategies for skin-delivery of LA considering those features in relation to the composition of the delivery systems described. The topics highlight the relationships between physico-chemical studies and pharmaceutical applications for liposomes and solid lipid nanoparticles as well as the formulation and clinical applications for hydrogels and patches. EXPERT OPINION: The development of LA skin-delivery systems using hydrogels and different permeation enhancers, liposomes or lipid nanoparticles (as isolated carrier systems or as their dispersion in a gel-base) and patches have been explored as alternatives to commercial formulations, modifying the release rate of LA, increasing bioadhesive properties and reducing toxicity, resulting in an improved therapeutic efficacy. This review should provide to the reader a special emphasis on four delivery-systems, comprising the group of liposomes and lipid nanoparticles, hydrogels and patches technologies looking forward their application for skin anesthesia.


Asunto(s)
Anestesia Local/métodos , Anestésicos Locales/administración & dosificación , Sistemas de Liberación de Medicamentos , Administración Cutánea , Anestésicos Locales/química , Animales , Química Farmacéutica , Geles/química , Humanos , Hidrogeles/administración & dosificación , Lípidos/administración & dosificación , Lípidos/química , Nanopartículas/administración & dosificación , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA