Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38194255

RESUMEN

In this study, a novel genus is proposed, Scaptona, with a novel species, Scaptona ramosa, isolated from nests of stingless bees (Scaptotrigona sp.). The taxonomic novelty was determined by the phylogenetic analysis of DNA sequences from the internal transcribed spacer regions, small subunit rRNA (18S rRNA), large subunit rRNA (28S rRNA) and the RNA polymerase II second-largest subunit gene (RPB2) and paired with our morphological studies. Based on this single species, Scaptona is characterized by greyish green to dark grey colonies, densely and profusely branched conidiophores and single-celled, variously shaped hyaline conidia. Scaptona ramosa constitutes a distinct, well-supported lineage within Cephalothecaceae and can be clearly distinguished from other genera both by DNA sequence analysis and morphological traits. The holotype of S. ramosa is URM 95352. The ex-type strain has been deposited in the Micoteca URM culture collection as URM 8721T and URM 8722. The MycoBank accession number is MB 849456 for the genus and MB 849456 for the species.


Asunto(s)
Ácidos Grasos , Animales , Abejas , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , ARN Ribosómico 18S
2.
Cladistics ; 35(5): 514-549, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34633696

RESUMEN

Penicillium species in section Lanata-divaricata are common soil-inhabiting fungi, but their presence in acidic soil has rarely been investigated. In an ongoing survey of Penicillium species occurring in China, 465 strains were isolated from soil, and of which 60 belonged to section Lanata-divaricata. The majority of these strains were isolated from acidic soil. The phylogenetic relationship between these 60 isolates and accepted species of section Lanata-divaricata was studied using ITS, BenA, CaM and RPB2 sequences, which revealed the presence of seven accepted species and 13 novel lineages. Combining phylogenetic data with data generated during macro- and microscopic observations resulted in the description of 13 new species. The growth rate of the new species obtained in this study was determined under acidic, neutral and alkaline conditions (pH 4, 7, 10). With the exception of P. hainanense, which was not able to grow at pH 10, all strains were able to grow at the three examined pH levels. Eleven species (i.e. P. austrosinense, P. flaviroseum, P. globosum, P. griseoflavum, P. hainanense, P. jianfenglingense, P. laevigatum, P. rubriannulatum, P. soliforme, P. spinuliferum, P. yunnanense) grew faster at low pH (pH 4) than at pH 7 or 10, and these species are therefore referred to as acid-preferential. Penicillium viridissimum grew fastest on neutral medium and P. guangxiense grew best at pH 10, and is therefore considered to be acid-tolerant. By isolating strains from a unique environment, combined with targeted isolation using a well-designed protocol, we are able to describe new fungal diversity with specific physiological characteristics.

3.
Antonie Van Leeuwenhoek ; 111(10): 1883-1912, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29654567

RESUMEN

Penicillium and Talaromyces species have a worldwide distribution and are isolated from various materials and hosts, including insects and their substrates. The aim of this study was to characterize the Penicillium and Talaromyces species obtained during a survey of honey, pollen and the inside of nests of Melipona scutellaris. A total of 100 isolates were obtained during the survey and 82% of those strains belonged to Penicillium and 18% to Talaromyces. Identification of these isolates was performed based on phenotypic characters and ß-tubulin and ITS sequencing. Twenty-one species were identified in Penicillium and six in Talaromyces, including seven new species. These new species were studied in detail using a polyphasic approach combining phenotypic, molecular and extrolite data. The four new Penicillium species belong to sections Sclerotiora (Penicillium fernandesiae sp. nov., Penicillium mellis sp. nov., Penicillium meliponae sp. nov.) and Gracilenta (Penicillium apimei sp. nov.) and the three new Talaromyces species to sections Helici (Talaromyces pigmentosus sp. nov.), Talaromyces (Talaromyces mycothecae sp. nov.) and Trachyspermi (Talaromyces brasiliensis sp. nov.). The invalidly described species Penicillium echinulonalgiovense sp. nov. was also isolated during the survey and this species is validated here.


Asunto(s)
Abejas/microbiología , Miel/microbiología , Penicillium/clasificación , Polen/microbiología , Talaromyces/clasificación , Animales , Microbiología Ambiental , Genes Fúngicos , Tipificación Molecular , Penicillium/genética , Penicillium/aislamiento & purificación , Filogenia , Talaromyces/genética , Talaromyces/aislamiento & purificación
4.
Artículo en Inglés | MEDLINE | ID: mdl-28368305

RESUMEN

Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma, have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view.


Asunto(s)
Colorantes/metabolismo , Residuos Industriales , Trichoderma/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Brasil , Colorantes/química , Textiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA