Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
J Appl Toxicol ; 44(9): 1317-1328, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38715282

RESUMEN

The prevalence of fragrances in various hygiene products contributes to their sensorial allure. However, fragrances can induce sensitization in the skin or respiratory system, and the mechanisms involved in this process are incompletely understood. This study investigated the intricate mechanisms underlying the fragrance's effects on sensitization response, focusing on the interplay between CYP450 enzymes, a class of drug-metabolizing enzymes, and the adaptive immune system. Specifically, we assessed the expression of CYP450 enzymes and cytokine profiles in culture of BEAS-2B and mature dendritic cells (mDC) alone or in co-culture stimulated with 2 mM of a common fragrance, cinnamyl alcohol (CA) for 20 h. CYP1A1, CYP1A2, CYP1B1, CYP2A6, and CYP2A13 were analyzed by RT-PCR and IL-10, IL-12p70, IL-18, IL-33, and thymic stromal lymphopoietin (TSLP) by Cytometric Bead Array (CBA). Through RT-PCR analysis, we observed that CA increased CYP1A2 and CYP1B1 expression in BEAS-2B, with a further increased in BEAS-2B-mDC co-culture. Additionally, exposure to CA increased IL-12p70 levels in mDC rather than in BEAS-2B-mDC co-culture. In regards to IL-18, level was higher in BEAS-2B than in BEAS-2B-mDC co-culture. A positive correlation between the levels of IL-10 and CYP1B1 was found in mDC-CA-exposed and between IL-12p70 and CYP1A1 was found in BEAS-2B after CA exposure. However, IL-12p70 and CYP1A2 as well as IL-18, IL-33, and CYP1A1 levels were negative, correlated mainly in co-culture control. These correlations highlight potential immunomodulatory interactions and complex regulatory relationships. Overall, exposure to CA enhances CYP450 expression, suggesting that CA can influence immune responses by degrading ligands on xenosensitive transcription factors.


Asunto(s)
Técnicas de Cocultivo , Sistema Enzimático del Citocromo P-450 , Citocinas , Células Dendríticas , Propanoles , Humanos , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Propanoles/toxicidad , Propanoles/metabolismo , Línea Celular , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismo , Perfumes/toxicidad , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/genética
2.
Clin Sci (Lond) ; 135(1): 19-34, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33399849

RESUMEN

Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by insulin-producing pancreatic ß-cell destruction and hyperglycemia. While monocytes and NOD-like receptor family-pyrin domain containing 3 (NLRP3) are associated with T1D onset and development, the specific receptors and factors involved in NLRP3 inflammasome activation remain unknown. Herein, we evaluated the inflammatory state of resident peritoneal macrophages (PMs) from genetically modified non-obese diabetic (NOD), NLRP3-KO, wild-type (WT) mice and in peripheral blood mononuclear cells (PBMCs) from human T1D patients. We also assessed the effect of docosahexaenoic acid (DHA) on the inflammatory status. Macrophages from STZ-induced T1D mice exhibited increased inflammatory cytokine/chemokine levels, nitric oxide (NO) secretion, NLRP3 and iNOS protein levels, and augmented glycolytic activity compared to control animals. In PMs from NOD and STZ-induced T1D mice, DHA reduced NO production and attenuated the inflammatory state. Furthermore, iNOS and IL-1ß protein expression levels and NO production were lower in the PMs from diabetic NLRP3-KO mice than from WT mice. We also observed increased IL-1ß secretion in PBMCs from T1D patients and immortalized murine macrophages treated with advanced glycation end products and palmitic acid. The present study demonstrated that the resident PMs are in a proinflammatory state characterized by increased NLRP3/iNOS pathway-mediated NO production, up-regulated proinflammatory cytokine/chemokine receptor expression and altered glycolytic activity. Notably, ex vivo treatment with DHA reverted the diabetes-induced changes and attenuated the macrophage inflammatory state. It is plausible that DHA supplementation could be employed as adjuvant therapy for treating individuals with T1D.


Asunto(s)
Antiinflamatorios/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Adulto , Animales , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/enzimología , Diabetes Mellitus Tipo 1/inmunología , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/enzimología , Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Macrófagos Peritoneales/enzimología , Macrófagos Peritoneales/inmunología , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Persona de Mediana Edad , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Embarazo , Transducción de Señal , Estreptozocina
3.
J Cell Physiol ; 235(1): 587-598, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31254281

RESUMEN

Laminin peptides influence cancer biology. We investigated the role of a laminin-derived peptide C16 regulating invadopodia molecules in human prostate cancer cells (DU145). C16 augmented invadopodia activity of DU145 cells, and stimulated expression Tks4, Tks5, cortactin, and membrane-type matrix metalloproteinase 1. Reactive oxygen species generation is also related to invadopodia formation. This prompted us to address whether C16 would induce reactive oxygen species generation in DU145 cells. Quantitative fluorescence and flow cytometry showed that the peptide C16 increased reactive oxygen species in DU145 cells. Furthermore, significant colocalization between Tks5 and reactive oxygen species was observed in C16-treated cells. Results suggested that the peptide C16 increased Tks5 and reactive oxygen species in prostate cancer cells. The role of C16 increasing Tks and reactive oxygen species are novel findings on invadopodia activity.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Laminina/farmacología , Podosomas/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Laminina/metabolismo , Masculino , Invasividad Neoplásica/patología , Neoplasias de la Próstata/metabolismo , Proteolisis/efectos de los fármacos
4.
Mediators Inflamm ; 2019: 8346930, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827382

RESUMEN

Dendritic cells (DCs) are the most efficient antigen-presenting cells and link the innate immune sensing of the environment to the initiation of adaptive immune responses, which may be directed to either acceptance or elimination of the recognized antigen. In cancer patients, though DCs would be expected to present tumor antigens to T lymphocytes and induce tumor-eliminating responses, this is frequently not the case. The complex tumor microenvironment subverts the immune response, blocks some effector mechanisms, and drives others to support tumor growth. Chronic inflammation in a tumor microenvironment is believed to contribute to the induction of such regulatory/tolerogenic response. Among the various mediators of the modulatory switch in chronic inflammation is the "antidanger signal" chaperone, heat shock protein 27 (Hsp27), that has been described, interestingly, to be associated with cell migration and drug resistance of breast cancer cells. Thus, here, we investigated the expression of Hsp27 during the differentiation of monocyte-derived DCs (Mo-DCs) from healthy donors and breast cancer patients and evaluated their surface phenotype, cytokine secretion pattern, and lymphostimulatory activity. Surface phenotype and lymphocyte proliferation were evaluated by flow cytometry, interferon- (IFN-) γ, and interleukin- (IL-) 10 secretion, by ELISA and Hsp27 expression, by quantitative polymerase chain reaction (qPCR). Mo-DCs from cancer patients presented decreased expression of DC maturation markers, decreased ability to induce allogeneic lymphocyte proliferation, and increased IL-10 secretion. In coculture with breast cancer cell lines, healthy donors' Mo-DCs showed phenotype changes similar to those found in patients' cells. Interestingly, patients' monocytes expressed less GM-CSF and IL-4 receptors than healthy donors' monocytes and Hsp27 expression was significantly higher in patients' Mo-DCs (and in tumor samples). Both phenomena could contribute to the phenotypic bias of breast cancer patients' Mo-DCs and might prove potential targets for the development of new immunotherapeutic approaches for breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Células Dendríticas/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Monocitos/metabolismo , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Humanos , Interferón gamma/metabolismo , Interleucina-10/metabolismo , Reacción en Cadena de la Polimerasa
5.
J Allergy Clin Immunol ; 142(5): 1571-1588.e9, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29518426

RESUMEN

BACKGROUND: Patients with X-linked hyper-IgM syndrome caused by CD40 ligand (CD40L) deficiency often present with episodic, cyclic, or chronic neutropenia, suggesting abnormal neutrophil development in the absence of CD40L-CD40 interaction. However, even when not neutropenic and despite immunoglobulin replacement therapy, CD40L-deficient patients are susceptible to life-threatening infections caused by opportunistic pathogens, suggesting impaired phagocyte function and the need for novel therapeutic approaches. OBJECTIVES: We sought to analyze whether peripheral neutrophils from CD40L-deficient patients display functional defects and to explore the in vitro effects of recombinant human IFN-γ (rhIFN-γ) on neutrophil function. METHODS: We investigated the microbicidal activity, respiratory burst, and transcriptome profile of neutrophils from CD40L-deficient patients. In addition, we evaluated whether the lack of CD40L in mice also affects neutrophil function. RESULTS: Neutrophils from CD40L-deficient patients exhibited defective respiratory burst and microbicidal activity, which were improved in vitro by rhIFN-γ but not soluble CD40L. Moreover, neutrophils from patients showed reduced CD16 protein expression and a dysregulated transcriptome suggestive of impaired differentiation. Similar to CD40L-deficient patients, CD40L knockout mice were found to have impaired neutrophil responses. In parallel, we demonstrated that soluble CD40L induces the promyelocytic cell line HL-60 to proliferate and mature by regulating the expression of genes of the same Gene Ontology categories (eg, cell differentiation) when compared with those dysregulated in peripheral blood neutrophils from CD40L-deficient patients. CONCLUSION: Our data suggest a nonredundant role of CD40L-CD40 interaction in neutrophil development and function that could be improved in vitro by rhIFN-γ, indicating a potential novel therapeutic application for this cytokine.


Asunto(s)
Ligando de CD40/deficiencia , Interferón gamma/farmacología , Neutrófilos/efectos de los fármacos , Animales , Ligando de CD40/inmunología , Femenino , Células HL-60 , Humanos , Síndrome de Inmunodeficiencia con Hiper-IgM Tipo 1/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , N-Formilmetionina Leucil-Fenilalanina/farmacología , Neutrófilos/fisiología , Paracoccidioides , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/farmacología , Estallido Respiratorio/efectos de los fármacos , Staphylococcus aureus , Acetato de Tetradecanoilforbol/farmacología , Transcriptoma/efectos de los fármacos
6.
J Allergy Clin Immunol ; 139(3): 900-912.e7, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27554817

RESUMEN

BACKGROUND: CD40 ligand (CD40L) deficiency predisposes to opportunistic infections, including those caused by fungi and intracellular bacteria. Studies of CD40L-deficient patients reveal the critical role of CD40L-CD40 interaction for the function of T, B, and dendritic cells. However, the consequences of CD40L deficiency on macrophage function remain to be investigated. OBJECTIVES: We sought to determine the effect of CD40L absence on monocyte-derived macrophage responses. METHODS: After observing the improvement of refractory disseminated mycobacterial infection in a CD40L-deficient patient by recombinant human IFN-γ (rhIFN-γ) adjuvant therapy, we investigated macrophage functions from CD40L-deficient patients. We analyzed the killing activity, oxidative burst, cytokine production, and in vitro effects of rhIFN-γ and soluble CD40 ligand (sCD40L) treatment on macrophages. In addition, the effect of CD40L absence on the macrophage transcriptome before and after rhIFN-γ treatment was studied. RESULTS: Macrophages from CD40L-deficient patients exhibited defective fungicidal activity and reduced oxidative burst, both of which improved in the presence of rhIFN-γ but not sCD40L. In contrast, rhIFN-γ and sCD40L ameliorate impaired production of inflammatory cytokines. Furthermore, rhIFN-γ reversed defective control of Mycobacterium tuberculosis proliferation by patients' macrophages. The absence of CD40L dysregulated the macrophage transcriptome, which was improved by rhIFN-γ. Additionally, rhIFN-γ increased expression levels of pattern recognition receptors, such as Toll-like receptors 1 and 2, dectin 1, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin in macrophages from both control subjects and patients. CONCLUSION: Absence of CD40L impairs macrophage development and function. In addition, the improvement of macrophage immune responses by IFN-γ suggests this cytokine as a potential therapeutic option for patients with CD40L deficiency.


Asunto(s)
Ligando de CD40/deficiencia , Síndromes de Inmunodeficiencia/inmunología , Interferón gamma/farmacología , Macrófagos/efectos de los fármacos , Adolescente , Adulto , Células Cultivadas , Niño , Preescolar , Humanos , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/fisiología , Masculino , Monocitos/citología , Mycobacterium tuberculosis , Fagocitosis , Transcriptoma/efectos de los fármacos , Adulto Joven
7.
J Infect Dis ; 216(12): 1623-1634, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29029192

RESUMEN

Background: Mutations in genes affecting interferon-γ (IFN-γ) immunity have contributed to understand the role of IFN-γ in protection against intracellular pathogens. However, inborn errors in STAT4, which controls interleukin-12 (IL-12) responses, have not yet been reported. Our objective was to determine the genetic defect in a family with a history of paracoccidioidomycosis. Methods: Genetic analysis was performed by whole-exome sequencing and Sanger sequencing. STAT4 phosphorylation (pSTAT4) and translocation to the nucleus, IFN-γ release by patient lymphocytes, and microbicidal activity of patient monocytes/macrophages were assessed. The effect on STAT4 function was evaluated by site-directed mutagenesis using a lymphoblastoid B cell line (B-LCL) and U3A cells. Results: A heterozygous missense mutation, c.1952 A>T (p.E651V) in STAT4 was identified in the index patient and her father. Patient's and father's lymphocytes showed reduced pSTAT4, nuclear translocation, and impaired IFN-γ production. Mutant B-LCL and U3A cells also displayed reduced pSTAT4. Patient's and father's peripheral blood mononuclear cells and macrophages demonstrated impaired fungicidal activity compared with those from healthy controls that improved in the presence of recombinant human IFN-γ, but not rhIL-12. Conclusion: Our data suggest autosomal dominant STAT4 deficiency as a novel inborn error of IL-12-dependent IFN-γ immunity associated with susceptibility to paracoccidioidomycosis.


Asunto(s)
Predisposición Genética a la Enfermedad , Interferón gamma/deficiencia , Subunidad p35 de la Interleucina-12/metabolismo , Mutación Missense , Paracoccidioidomicosis/genética , Factor de Transcripción STAT4/genética , Adulto , Anciano , Línea Celular , Salud de la Familia , Femenino , Genotipo , Heterocigoto , Humanos , Linfocitos/inmunología , Macrófagos/inmunología , Masculino , Análisis de Secuencia de ADN
8.
J Immunol ; 194(7): 3180-90, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25725100

RESUMEN

Maturation of dendritic cells (DCs) is required to induce T cell immunity, whereas immature DCs can induce immune tolerance. Although the transcription factor STAT5 is suggested to participate in DC maturation, its role in this process remains unclear. In this study, we investigated the effect of STAT5 inhibition on LPS-induced maturation of human monocyte-derived DCs (Mo-DCs). We inhibited STAT5 by treating Mo-DCs with JQ1, a selective inhibitor of BET epigenetic readers, which can suppress STAT5 function. We found that JQ1 inhibits LPS-induced STAT5 phosphorylation and nuclear accumulation, thereby attenuating its transcriptional activity in Mo-DCs. The diminished STAT5 activity results in impaired maturation of Mo-DCs, as indicated by defective upregulation of costimulatory molecules and CD83, as well as reduced secretion of IL-12p70. Expression of constitutively activated STAT5 in JQ1-treated Mo-DCs overcomes the effects of JQ1 and enhances the expression of CD86, CD83, and IL-12. The activation of STAT5 in Mo-DCs is mediated by GM-CSF produced following LPS stimulation. Activated STAT5 then leads to increased expression of both GM-CSF and GM-CSFR, triggering an autocrine loop that further enhances STAT5 signaling and enabling Mo-DCs to acquire a more mature phenotype. JQ1 decreases the ability of Mo-DCs to induce allogeneic CD4(+) and CD8(+) T cell proliferation and production of proinflammatory cytokines. Furthermore, JQ1 leads to a reduced generation of inflammatory CD8(+) T cells and decreased Th1 differentiation. Thus, JQ1 impairs LPS-induced Mo-DC maturation by inhibiting STAT5 activity, thereby generating cells that can only weakly stimulate an adaptive-immune response. Therefore, JQ1 could have beneficial effects in treating T cell-mediated inflammatory diseases.


Asunto(s)
Azepinas/farmacología , Diferenciación Celular/efectos de los fármacos , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Factor de Transcripción STAT5/antagonistas & inhibidores , Triazoles/farmacología , Antígenos de Superficie/metabolismo , Diferenciación Celular/inmunología , Citocinas/biosíntesis , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Voluntarios Sanos , Humanos , Inmunofenotipificación , Mediadores de Inflamación/metabolismo , Quinasas Janus/antagonistas & inhibidores , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Modelos Biológicos , Monocitos/citología , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/metabolismo , Fenotipo , Dominios y Motivos de Interacción de Proteínas , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
9.
J Immunol ; 194(10): 4621-30, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25876764

RESUMEN

Proteases are recognized environmental allergens, but little is known about the mechanisms responsible for sensing enzyme activity and initiating the development of allergic inflammation. Because usage of the serine protease subtilisin in the detergent industry resulted in an outbreak of occupational asthma in workers, we sought to develop an experimental model of allergic lung inflammation to subtilisin and to determine the immunological mechanisms involved in type 2 responses. By using a mouse model of allergic airway disease, we have defined in this study that s.c. or intranasal sensitization followed by airway challenge to subtilisin induces prototypic allergic lung inflammation, characterized by airway eosinophilia, type 2 cytokine release, mucus production, high levels of serum IgE, and airway reactivity. These allergic responses were dependent on subtilisin protease activity, protease-activated receptor-2, IL-33R ST2, and MyD88 signaling. Also, subtilisin stimulated the expression of the proallergic cytokines IL-1α, IL-33, thymic stromal lymphopoietin, and the growth factor amphiregulin in a human bronchial epithelial cell line. Notably, acute administration of subtilisin into the airways increased lung IL-5-producing type 2 innate lymphoid cells, which required protease-activated receptor-2 expression. Finally, subtilisin activity acted as a Th2 adjuvant to an unrelated airborne Ag-promoting allergic inflammation to inhaled OVA. Therefore, we established a murine model of occupational asthma to a serine protease and characterized the main molecular pathways involved in allergic sensitization to subtilisin that potentially contribute to initiate allergic airway disease.


Asunto(s)
Asma Ocupacional/inmunología , Modelos Animales de Enfermedad , Inmunidad Innata/inmunología , Subtilisina/inmunología , Adulto , Alérgenos/inmunología , Animales , Línea Celular , Células Dendríticas/inmunología , Femenino , Citometría de Flujo , Humanos , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Adulto Joven
10.
J Liposome Res ; 27(4): 249-263, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27386901

RESUMEN

Cationic liposomes can be designed and developed in order to be an efficient gene delivery system for mammalian cells. Dendritic cell (DC) vaccines can be used to treat cancer, as cationic liposomes can deliver tumor antigens to cells while cells remain active. However, most methods used for liposome production are not able to reproduce in large scale the physicochemical and biological properties of liposomes produced in laboratory scale. In this context, ethanol injection method achieved promising results, although requiring post-treatment for size reduction and/or to remove residual ethanol. Thus, the purpose of this study was to generate cationic liposomes suitable for gene therapies via ethanol injection method in only one step (VEI) and compared to those submitted to a size reduction processes by microfluidization (MFV). For this, the method to produce cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and 1,2-dioleoylphosphatidylethanolamine (DOPE) was optimized using a statistical design approach. As a result, the size of VEI decreased from 290 nm to 110 nm and the polydispersity from 0.54 to 0.17. In the case of MFV, size decreased from 128 nm to 107 nm and polydispersity from 0.40 to 0.18. ST and MFV before and after optimization were also characterized in terms of morphology by transmission electron microscopy (TEM) and structure by differential scanning calorimetry (DSC). Finally, to show their potential in gene/immune therapies applications, DCs were stimulated by such liposomes. Cells internalized liposomes, increasing expression of the costimulatory molecule CD86 and inducing T lymphocyte proliferation.


Asunto(s)
Etanol/química , Técnicas de Transferencia de Gen , Liposomas/química , Animales , Antígeno B7-2/metabolismo , Cationes , Proliferación Celular , Células Dendríticas/inmunología , Ácidos Grasos Monoinsaturados/química , Terapia Genética , Humanos , Inmunoterapia , Tamaño de la Partícula , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Compuestos de Amonio Cuaternario/química , Propiedades de Superficie , Linfocitos T/citología
11.
Toxicol Appl Pharmacol ; 295: 56-67, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26876618

RESUMEN

Benzofuroxan is an interesting ring system, which has shown a wide spectrum of biological responses against tumor cell lines. We investigated, herein, the antitumor effects of benzofuroxan derivatives (BFDs) in vitro and in a melanoma mouse model. Cytotoxic effects of twenty-two BFDs were determined by MTT assay. Effects of BFD-22 in apoptosis and cell proliferation were evaluated using Annexin V-FITC/PI and CFSE staining. In addition, the effects in the cell cycle were assessed. Flow cytometry, western blot, and fluorescence microscopy analysis were employed to investigate the apoptosis-related proteins and the BRAF signaling. Cell motility was also exploited through cell invasion and migration assays. Molecular docking approach was performed in order to verify the BFD-22 binding mode into the ATP catalytic site of BRAF kinase. Moreover, the BFD-22 antitumor effects were evaluated in a melanoma murine model using B16F10. BFD-22 was identified as a potential hit against melanoma cells. BFD-22 induced apoptosis and inhibited cell proliferation of B16F10 cells. BFD-22 has suppressed, indeed, the migratory and invasive behavior of B16F10 cells. Cyclin D1 and CDK4 expression were reduced leading to cell cycle arrest at G0/G1 phase. Of note, phosphorylation of BRAF at Ser338 was strongly down-regulated by BFD-22 in B16F10 cells. The accommodation/orientation into the binding site of BRAF was similar of BAY43-9006 (co-crystallized inhibitor of BRAF, sorafenib). Importantly, BFD-22 presented in vivo antimetastatic effects and showed better therapeutic efficacy than sorafenib and taxol. BFD-22 can be considered as a new lead compound and, then, can be helpful for the designing of novel drug candidates to treat melanoma.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Hidrazinas/farmacología , Melanoma Experimental/inmunología , Oxadiazoles/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Benzoxazoles , Western Blotting , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina D1/biosíntesis , Quinasa 4 Dependiente de la Ciclina/biosíntesis , Citometría de Flujo , Ratones , Microscopía Fluorescente , Simulación del Acoplamiento Molecular
12.
Cytotherapy ; 18(4): 570-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26971685

RESUMEN

BACKGROUND AIMS: Dendritic cell (DC)-tumor cell hybrids have been used clinically in cancer immunotherapy, but their advantage over the simple mixture of tumor cells and DCs is still a matter of controversy. In this study, we compared DC-tumor cell hybrids with the non-fused mixture of DC and tumor cells directly in their ability to induce a specific immune response. METHODS: Hybrids were obtained by electrofusion of tumor cells and monocyte-derived DCs. Cell phenotype was evaluated by flow cytometry and antigen-presenting ability by co-culture with syngeneic T cells followed by tetramer analysis and interferon (IFN)-γ ELISPOT. RESULTS: Less than half the cells in the mixture expressed DC co-stimulatory molecules. Furthermore, DCs in the mixture had significantly lower expression of MHC class I molecules than DCs in the fusion. Conversely, nearly all CD11c(+)Her2/neu(+) hybrids expressed CD80, CD86, CD83, HLA-DR and MHC class I from both tumor cells and DCs. Using tumor cells constitutively expressing a cytomegalovirus (CMV) antigen, we show that expansion of CMV-specific cytotoxic T lymphocytes (CTLs) restricted by DCs' MHC class I molecules was higher when DC-tumor hybrids were the stimulators. Furthermore, only hybrids stimulated CTLs to produce IFN-γ in response to CMV-positive target cells. CONCLUSIONS: These data show the superiority of DC-tumor cell hybrids over their simple mixture as T-cell stimulators. Hybrids expressed more co-stimulatory and MHC molecules, induced higher antigen-specific T-cell expansion and were the only cells able to induce IFN-γ-producing antigen-specific T cells. Thus, these data offer further support for cancer immunotherapeutic approaches using DC-tumor cell hybrids.


Asunto(s)
Células Dendríticas/inmunología , Células Híbridas/inmunología , Inmunidad Celular , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/terapia , Presentación de Antígeno , Vacunas contra el Cáncer/inmunología , Fusión Celular , Células Cultivadas , Técnicas de Cocultivo , Células Dendríticas/patología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Células Híbridas/patología , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología
13.
J Nanosci Nanotechnol ; 16(1): 270-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27398454

RESUMEN

Immunotherapy of cancer aims to harness the immune system to detect and destroy cancer cells. To induce an immune response against cancer, activated dendritic cells (DCs) must present tumor antigens to T lymphocytes of patients. However, cancer patients' DCs are frequently defective, therefore, they are prone to induce rather tolerance than immune responses. In this context, loading tumor antigens into DCs and, at the same time, activating these cells, is a tempting goal within the field. Thus, we investigated the effects of cationic liposomes on the DCs differentiation/maturation, evaluating their surface phenotype and ability to stimulate T lymphocytes proliferation in vitro. The cationic liposomes composed by egg phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium propane and 1,2-dioleoylphosphatidylethanolamine (50/25/25% molar) were prepared by the thin film method followed by extrusion (65 nm, polydispersity of 0.13) and by the dehydration-rehydration method (95% of the population 107 nm, polydispersity of 0.52). The phenotypic analysis of dendritic cells and the analysis of T lymphocyte proliferation were performed by flow cytometry and showed that both cationic liposomes were incorporated and activated dendritic cells. Extruded liposomes were better incorporated and induced higher CD86 expression for dendritic cells than dehydrated-rehydrated vesicles. Furthermore, dendritic cells which internalized extruded liposomes also provided stronger T lymphocyte stimulation. Thus, cationic liposomes with a smaller size and polydispersity seem to be better incorporated by dendritic cells. Hence, these cationic liposomes could be used as a potential tool in further cancer immunotherapy strategies and contribute to new strategies in immunotherapy.


Asunto(s)
Antígeno B7-2/inmunología , Proliferación Celular/efectos de los fármacos , Células Dendríticas/inmunología , Liposomas/farmacología , Activación de Linfocitos/efectos de los fármacos , Linfocitos T/inmunología , Células Dendríticas/citología , Femenino , Humanos , Liposomas/síntesis química , Liposomas/química , Masculino , Linfocitos T/citología
14.
Cancer Immunol Immunother ; 64(2): 161-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25314913

RESUMEN

PURPOSE: The chromophobe renal cell carcinoma (ChRCC), though associated with a hereditary cancer syndrome, has a good prognosis after tumor removal. The lack of recurrence could be related to the absence of immune system compromise in patients or to an effective functional recovery of immune functions after tumor removal. Thus, we evaluated monocyte-derived dendritic cells (Mo-DCs) in a 34-year-old male who had a ChRCC, before and after tumor removal. METHODS: CD14(+) monocytes from the patient's peripheral blood, 1 week before and 3 months after partial nephrectomy, were differentiated in vitro into immature and mature Mo-DCs. These were harvested, analyzed by flow cytometry and used as stimulators of allogeneic T cells. Supernatants from cultures were collected for cytokine analysis. RESULTS: Tumor removal was associated with decreased expression of PD-L1, but also, surprisingly, of CD205, HLA-DR, CD80 and CD86 by Mo-DCs. Also, Mo-DC's ability to stimulate T cell proliferation increased, along with IL-2Rα expression and IFN-γ production. Simultaneously, the patients' Mo-DCs ability to induce Foxp3(+) T cells decreased after surgery. One-year postoperative follow-up shows no tumor recurrence. CONCLUSION: The presence of a ChRCC affected Mo-DCs generated in vitro, which recovered their function after tumor removal. This indicates that the favorable outcome observed after ChRCC resection may be due to the restoration of immunocompetence. Furthermore, since functional alterations described for DCs within tumors may be also found in Mo-DCs, their accurate functional analysis-not restricted to the determination of their surface immunophenotype-may provide an indirect "window" to the tumor microenvironment.


Asunto(s)
Carcinoma de Células Renales/inmunología , Células Dendríticas/inmunología , Neoplasias Renales/inmunología , Monocitos/inmunología , Adulto , Antígenos de Superficie/metabolismo , Carcinoma de Células Renales/diagnóstico , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/cirugía , Diferenciación Celular , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Humanos , Inmunofenotipificación , Neoplasias Renales/diagnóstico , Neoplasias Renales/metabolismo , Neoplasias Renales/cirugía , Masculino , Monocitos/citología , Monocitos/metabolismo , Fenotipo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Tomografía Computarizada por Rayos X
15.
Tumour Biol ; 36(9): 7251-67, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25894379

RESUMEN

Capsaicin, the primary pungent component of the chili pepper, has antitumor activity. Herein, we describe the activity of RPF151, an alkyl sulfonamide analogue of capsaicin, against MDA-MB-231 breast cancer cells. RPF151 was synthetized, and molecular modeling was used to compare capsaicin and RPF151. Cytotoxicity of RPF151 on MDA-MB-231 was also evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazolium bromide (MTT) assay. Cell cycle analysis, by flow cytometry, and Western blot analysis of cycle-related proteins were used to evaluate the antiproliferative mechanisms. Apoptosis was evaluated by phosphatidyl-serine externalization, cleavage of Ac-YVAD-AMC, and Bcl-2 expression. The production of reactive oxygen species was evaluated by flow cytometry. RPF151 in vivo antitumor effects were investigated in murine MDA-MB-231 model. This study shows that RPF151 downregulated p21 and cyclins A, D1, and D3, leading to S-phase arrest and apoptosis. Although RPF151 has induced the activation of TRPV-1 and TRAIL-R1/DR4 and TRAIL-2/DR5 on the surface of MDA-MB-231 cells, its in vivo antitumor activity was TRPV-1-independent, thus suggesting that RPF151 should not have the same pungency-based limitation of capsaicin. In silico analysis corroborated the biological findings, showing that RPF151 has physicochemical improvements over capsaicin. Overall, the activity of RPF151 against MDA-MB-231 and its lower pungency suggest that it may have a relevant role in cancer therapy.


Asunto(s)
Neoplasias de la Mama/genética , Capsaicina/administración & dosificación , Proliferación Celular/efectos de los fármacos , Proteínas de Neoplasias/biosíntesis , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Capsaicina/análogos & derivados , Capsaicina/química , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Proteínas de Neoplasias/genética , Unión Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Infect Immun ; 81(4): 1064-77, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23340311

RESUMEN

The protective adaptive immune response in paracoccidioidomycosis, a mycosis endemic among humans, is mediated by T cell immunity, whereas impaired T cell responses are associated with severe, progressive disease. The early host response to Paracoccidioides brasiliensis infection is not known since the disease is diagnosed at later phases of infection. Our laboratory established a murine model of infection where susceptible mice reproduce the severe disease, while resistant mice develop a mild infection. This work aimed to characterize the influence of dendritic cells in the innate and adaptive immunity of susceptible and resistant mice. We verified that P. brasiliensis infection induced in bone marrow-derived dendritic cells (DCs) of susceptible mice a prevalent proinflammatory myeloid phenotype that secreted high levels of interleukin-12 (IL-12), tumor necrosis factor alpha, and IL-ß, whereas in resistant mice, a mixed population of myeloid and plasmacytoid DCs secreting proinflammatory cytokines and expressing elevated levels of secreted and membrane-bound transforming growth factor ß was observed. In proliferation assays, the proinflammatory DCs from B10.A mice induced anergy of naïve T cells, whereas the mixed DC subsets from resistant mice induced the concomitant proliferation of effector and regulatory T cells (Tregs). Equivalent results were observed during pulmonary infection. The susceptible mice displayed preferential expansion of proinflammatory myeloid DCs, resulting in impaired proliferation of effector T cells. Conversely, the resistant mice developed myeloid and plasmacytoid DCs that efficiently expanded gamma interferon-, IL-4-, and IL-17-positive effector T cells associated with increased development of Tregs. Our work highlights the deleterious effect of excessive innate proinflammatory reactions and provides new evidence for the importance of immunomodulation during pulmonary paracoccidioidomycosis.


Asunto(s)
Células Dendríticas/inmunología , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Paracoccidioides/inmunología , Paracoccidioides/patogenicidad , Paracoccidioidomicosis/inmunología , Linfocitos T/inmunología , Animales , Proliferación Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Ratones
17.
Clin Dev Immunol ; 2013: 806025, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23762097

RESUMEN

Dendritic cells (DCs) are essential for the maintenance of homeostasis in the organism, and they do that by modulating lymphocyte priming, expansion, and response patterns according to signals they receive from the environment. The induction of suppressive lymphocytes by DCs is essential to hinder the development of autoimmune diseases but can be reverted against homeostasis when in the context of neoplasia. In this setting, the induction of suppressive or regulatory T cells contributes to the establishment of a state of tolerance towards the tumor, allowing it to grow unchecked by an otherwise functional immune system. Besides affecting its local environment, tumor also has been described as potent sources of anti-inflammatory/suppressive factors, which may act systemically, generating defects in the differentiation and maturation of immune cells, far beyond the immediate vicinity of the tumor mass. Cytokines, as IL-10 and TGF-beta, as well as cell surface molecules like PD-L1 and ICOS seem to be significantly involved in the redirection of DCs towards tolerance induction, and recent data suggest that tumor cells may, indeed, modulate distinct DCs subpopulations through the involvement of these molecules. It is to be expected that the identification of such molecules should provide molecular targets for more effective immunotherapeutic approaches to cancer.


Asunto(s)
Antígeno B7-H1/inmunología , Células Dendríticas/inmunología , Proteína Coestimuladora de Linfocitos T Inducibles/inmunología , Interleucina-10/inmunología , Neoplasias/inmunología , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta/inmunología , Antígeno B7-H1/genética , Comunicación Celular , Células Dendríticas/patología , Regulación de la Expresión Génica , Humanos , Tolerancia Inmunológica , Proteína Coestimuladora de Linfocitos T Inducibles/genética , Interleucina-10/genética , Activación de Linfocitos , Neoplasias/patología , Transducción de Señal , Linfocitos T Reguladores/patología , Factor de Crecimiento Transformador beta/genética , Microambiente Tumoral/inmunología
18.
J Allergy Clin Immunol ; 129(3): 778-86, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22154528

RESUMEN

BACKGROUND: Patients with X-linked hyper-IgM syndrome (X-HIGM) due to CD40 ligand (CD40L) mutations are susceptible to fungal pathogens; however, the underlying susceptibility mechanisms remain poorly understood. OBJECTIVE: To determine whether monocyte-derived dendritic cells (DCs) from patients with X-HIGM exhibit normal responses to fungal pathogens. METHODS: DCs from patients and controls were evaluated for the expression of costimulatory (CD80 and CD86) and MHC class II molecules and for their ability to produce IL-12 and IL-10 in response to Candida albicans and Paracoccidioides brasiliensis. We also evaluated the ability of C albicans- and P brasiliensis-pulsed mature DCs to induce autologous T-cell proliferation, generation of T helper (T(H)) 17 cells, and production of IFN-γ, TGF-ß, IL-4, IL-5, and IL-17. RESULTS: Immature DCs from patients with X-HIGM showed reduced expression of CD80, CD86, and HLA-DR, which could be reversed by exogenous trimeric soluble CD40L. Most important, mature DCs from patients with X-HIGM differentiated by coculturing DCs with fungi secreted minimal amounts of IL-12 but substantial amounts of IL-10 compared with mature DCs from normal individuals. Coculture of mature DCs from X-HIGM patients with autologous T cells led to low IFN-γ production, whereas IL-4 and IL-5 production was increased. T-cell proliferation and IL-17 secretion were normal. Finally, in vitro incubation with soluble CD40L reversed the decreased IL-12 production and the skewed T(H)2 pattern response. CONCLUSION: Absence of CD40L during monocyte/DC differentiation leads to functional DC abnormalities, which may contribute to the susceptibility to fungal infections in patients with X-HIGM.


Asunto(s)
Candida albicans/inmunología , Candidiasis/inmunología , Células Dendríticas/metabolismo , Síndrome de Inmunodeficiencia con Hiper-IgM Tipo 1/inmunología , Paracoccidioides/inmunología , Paracoccidioidomicosis/inmunología , Adolescente , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Ligando de CD40/genética , Ligando de CD40/inmunología , Ligando de CD40/metabolismo , Candida albicans/patogenicidad , Candidiasis/complicaciones , Candidiasis/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Técnicas de Cocultivo , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/patología , Células Dendríticas/virología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Síndrome de Inmunodeficiencia con Hiper-IgM Tipo 1/complicaciones , Síndrome de Inmunodeficiencia con Hiper-IgM Tipo 1/genética , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/genética , Masculino , Mutación/genética , Paracoccidioides/patogenicidad , Paracoccidioidomicosis/complicaciones , Paracoccidioidomicosis/genética , Células Th17/inmunología , Células Th17/metabolismo , Células Th17/patología
19.
Biomedicines ; 10(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35203609

RESUMEN

Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells' biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma-a disease that, currently, causes inevitable death, usually in a short time after diagnosis.

20.
Cells ; 11(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35269470

RESUMEN

Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflammatory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of 1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute inflammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease [KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19 patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins that point to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.


Asunto(s)
COVID-19 , Linfohistiocitosis Hemofagocítica , Inteligencia Artificial , COVID-19/complicaciones , COVID-19/genética , Niño , Humanos , Linfohistiocitosis Hemofagocítica/complicaciones , Activación Neutrófila , SARS-CoV-2 , Síndrome de Respuesta Inflamatoria Sistémica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA