Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Science ; 265(5181): 2082-5, 1994 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-8091230

RESUMEN

The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for both nucleotide excision repair and certain mitotic recombination events. Here, model recombination and repair intermediates were used to show that Rad1-Rad10-mediated cleavage occurs at duplex-single-strand junctions. Moreover, cleavage occurs only on the strand containing the 3' single-stranded tail. Thus, both biochemical and genetic evidence indicate a role for the Rad1-Rad10 complex in the cleavage of specific recombination intermediates. Furthermore, these data suggest that Rad1-Rad10 endonuclease incises DNA 5' to damaged bases during nucleotide excision repair.


Asunto(s)
Reparación del ADN , ADN de Hongos/metabolismo , Proteínas de Unión al ADN , Endodesoxirribonucleasas/metabolismo , Endonucleasas , Proteínas Fúngicas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Bases , Enzimas Reparadoras del ADN , ADN de Hongos/genética , ADN de Cadena Simple/metabolismo , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Endonucleasas Específicas del ADN y ARN con un Solo Filamento
2.
Mol Cell Biol ; 14(6): 3569-76, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8196602

RESUMEN

The Rad2, Rad3, Rad4, and Ss12 proteins are required for nucleotide excision repair in yeast cells and are homologs of four human proteins which are involved in a group of hereditary repair-defective diseases. We have previously shown that Rad3 protein is one of the five subunits of purified RNA polymerase II basal transcription initiation factor b (TFIIH) and that Ss12 protein physically associates with factor b (W.J. Feaver, J.Q. Svejstrup, L. Bardwell, A.J. Bardwell, S. Buratowski, K.D. Gulyas, T.F. Donahue, E.C. Friedberg, and R.D. Kornberg, Cell 75:1379-1387, 1993). Here we show that the Rad2 and Rad4 proteins interact with purified factor b in vitro. Rad2 (a single-stranded DNA endonuclease) specifically interacts with the Tfb1 subunit of factor b, and we have mapped a limited region of the Rad2 polypeptide which is sufficient for this interaction. Rad2 also interacts directly with Ss12 protein (a putative DNA helicase). The binding of Rad2 and Rad4 proteins to factor b may define intermediates in the assembly of the nucleotide excision repair repairosome. Furthermore, the loading of factor b (or such intermediates) onto promoters during transcription initiation provides a mechanism for the preferential targeting of repair proteins to actively transcribing genes.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Proteínas Fúngicas/metabolismo , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Factores de Transcripción TFII , Factores de Transcripción/metabolismo , Transglutaminasas , Secuencia de Bases , Endodesoxirribonucleasas/metabolismo , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Genes Fúngicos , Modelos Estructurales , Datos de Secuencia Molecular , Peso Molecular , Mutagénesis Insercional , Oligodesoxirribonucleótidos , Biosíntesis de Proteínas , Conformación Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Factor de Transcripción TFIIH , Transcripción Genética
3.
Nucleic Acids Res ; 29(3): 652-61, 2001 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11160886

RESUMEN

Cyclin D1 is expressed at abnormally high levels in many cancers and has been specifically implicated in the development of breast cancer. In this report we have extensively analyzed the cyclin D1 promoter in a variety of cancer cell lines that overexpress the protein and identified two critical regulatory elements (CREs), a previously identified CRE at -52 and a novel site at -30. In vivo footprinting experiments demonstrated factors binding at both sites. We have used a novel DNA-binding ligand, GL020924, to target the site at -30 (-30-21) of the cyclin D1 promoter in MCF7 breast cancer cells. A binding site for this novel molecule was constructed by mutating 2 bp of the wild-type cyclin D1 promoter at the -30-21 site. Treatment with GL020924 specifically inhibited expression of the targeted cyclin D1 promoter construct in MCF7 cells in a concentration-dependent manner, thus validating the -30-21 site as a target for minor groove-binding ligands. In addition, this result validates our approach to regulating the expression of genes implicated in disease by targeting small DNA-binding ligands to key regulatory elements in the promoters of those genes.


Asunto(s)
Ciclina D1/genética , Oligopéptidos/farmacología , Regiones Promotoras Genéticas/genética , Sitios de Unión/genética , Unión Competitiva , ADN/genética , ADN/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Luciferasas/efectos de los fármacos , Luciferasas/genética , Luciferasas/metabolismo , Mutación , Oligopéptidos/metabolismo , Unión Proteica , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Eliminación de Secuencia , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas
4.
Mutat Res ; 307(1): 5-14, 1994 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-7513823

RESUMEN

Recent years have witnessed considerable progress in the definition of the preferential repair of actively transcribed genes. Equally impressive progress has been achieved in our understanding of the genetic and biochemical complexity of the DNA-repair process called nucleotide excision repair (NER). Most recently studies in several laboratories have yielded observations which provide insights about how the processes of transcription and NER may be linked in prokaryotic and eukaryotic cells.


Asunto(s)
Reparación del ADN , Transcripción Genética , Animales , Humanos , Nucleótidos/metabolismo
6.
Mol Microbiol ; 8(6): 1177-88, 1993 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8361362

RESUMEN

The Saccharomyces cerevisiae Rad1 and Rad10 proteins are required for damage-specific incision during nucleotide excision repair and also for certain mitotic recombination events between repeated sequences. Previously we have demonstrated that Rad1 and Rad10 form a specific complex in vitro. Using the 'two-hybrid' genetic assay system we now report that Rad1 and Rad10 proteins are subunits of a specific complex in the cell nucleus. The Rad10-binding domain of Rad1 protein maps to a localized region between amino acids 809-997. The Rad1-binding domain of Rad10 protein maps between amino acids 90-210. These domains are evolutionarily conserved and are hydrophobic in character. Although significant homology exists between Rad10 and the human-DNA-repair protein Ercc1 in this region, we were unable to detect any interaction between Ercc1 and Rad1 proteins. We conclude that Rad1 and Rad10 operate in DNA repair and mitotic recombination as a constitutive complex.


Asunto(s)
Reparación del ADN/genética , ADN de Hongos/genética , Proteínas de Unión al ADN , Endonucleasas , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Recombinación Genética/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Secuencia de Bases , Enzimas Reparadoras del ADN , Humanos , Datos de Secuencia Molecular , Proteínas/genética , Proteínas Recombinantes de Fusión/metabolismo , Endonucleasas Específicas del ADN y ARN con un Solo Filamento
7.
Nature ; 362(6423): 860-2, 1993 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-8479526

RESUMEN

Damage-specific recognition and incision of DNA during nucleotide excision repair in yeast and mammalian cells requires multiple gene products. Amino-acid sequence homology between several yeast and mammalian genes suggests that the mechanism of nucleotide excision repair is conserved in eukaryotes, but very little is known about its biochemistry. In the yeast Saccharomyces cerevisiae at least 6 genes are needed for this process, including RAD1 and RAD10 (ref. 1). Mutations in the two genes inactivate nucleotide excision repair and result in a reduced efficiency of mitotic recombinational events between repeated sequences. The Rad10 protein has a stable and specific interaction with Rad1 protein and also binds to single-stranded DNA and promotes annealing of homologous single-stranded DNA. The amino-acid sequence of the yeast Rad10 protein is homologous with that of the human excision repair gene ERCC1 (ref. 3). Here we demonstrate that a complex of purified Rad1 and Rad10 proteins specifically degrades single-stranded DNA by an endonucleolytic mechanism. This endonuclease activity is presumably required to remove non-homologous regions of single-stranded DNA during mitotic recombination between repeated sequences as previously suggested, and may also be responsible for the specific incision of damaged DNA during nucleotide excision repair.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN , Desoxirribonucleasa I/metabolismo , Endonucleasas , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimología , Bacteriófagos/genética , Clonación Molecular , Enzimas Reparadoras del ADN , ADN de Cadena Simple/metabolismo , ADN Viral/metabolismo , Escherichia coli , Proteínas Fúngicas/aislamiento & purificación , Unión Proteica , Recombinación Genética , Saccharomyces cerevisiae/genética , Endonucleasas Específicas del ADN y ARN con un Solo Filamento
8.
J Biol Chem ; 276(13): 10374-86, 2001 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-11134045

RESUMEN

The recognition of mitogen-activated protein kinases (MAPKs) by their upstream activators, MAPK/ERK kinases (MEKs), is crucial for the effective and accurate transmission of many signals. We demonstrated previously that the yeast MAPKs Kss1 and Fus3 bind with high affinity to the N terminus of the MEK Ste7, and proposed that a conserved motif in Ste7, the MAPK-docking site, mediates this interaction. Here we show that the corresponding sequences in human MEK1 and MEK2 are necessary and sufficient for the direct binding of the MAPKs ERK1 and ERK2. Mutations in MEK1, MEK2, or Ste7 that altered conserved residues in the docking site diminished binding of the cognate MAPKs. Furthermore, short peptides corresponding to the docking sites in these MEKs inhibited MEK1-mediated phosphorylation of ERK2 in vitro. In yeast cells, docking-defective alleles of Ste7 were modestly compromised in their ability to transmit the mating pheromone signal. This deficiency was dramatically enhanced when the ability of the Ste5 scaffold protein to associate with components of the MAPK cascade was also compromised. Thus, both the MEK-MAPK docking interaction and binding to the Ste5 scaffold make mutually reinforcing contributions to the efficiency of signaling by this MAPK cascade in vivo.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae , Transducción de Señal , Alelos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Relación Dosis-Respuesta a Droga , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Glutatión Transferasa/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/química , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/genética , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Sistemas de Lectura Abierta , Péptidos/química , Feromonas/metabolismo , Fosforilación , Plásmidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Proteínas Quinasas/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transcripción Genética
9.
Biochemistry ; 33(17): 5305-11, 1994 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-8172904

RESUMEN

The yeast recombination and repair proteins Rad1 and Rad10 associate with a 1:1 stoichiometry to form a stable complex with a relative molecular mass of 190 kDa. This complex, which has previously been shown to degrade single-stranded DNA endonucleolytically, also cleaves supercoiled duplex DNA molecules. In this reaction, supercoiled (form I) molecules are rapidly converted to nicked, relaxed (form II) molecules, presumably as a result of nicking at transient single-stranded regions in the supercoiled DNA. At high enzyme concentrations, there is a slow conversion of the form II molecules to linear (form III) molecules. The Rad1/Rad10 endonuclease does not preferentially cleave UV-irradiated DNA and has no detectable exonuclease activity. The nuclease activity of the Rad1/Rad10 complex is consistent with the predicted roles of the RAD1 and RAD10 genes of Saccharomyces cerevisiae in both the incision events of nucleotide excision repair and the removal of nonhomologous 3' single strands during intrachromosomal recombination between repeated sequences. In these pathways, the specificity and reactivity of the Rad1/Rad10 endonuclease will probably be modulated by further protein-protein interactions.


Asunto(s)
Proteínas de Unión al ADN , Desoxirribonucleasas/metabolismo , Endonucleasas , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Clonación Molecular , Enzimas Reparadoras del ADN , Desoxirribonucleasas/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Proteínas Fúngicas/química , Genes Fúngicos , Immunoblotting , Cinética , Peso Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Endonucleasas Específicas del ADN y ARN con un Solo Filamento
10.
Mol Cell ; 8(3): 683-91, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11583629

RESUMEN

Signals transmitted by common components often elicit distinct (yet appropriate) outcomes. In yeast, two developmental options-mating and invasive growth-are both regulated by the same MAP kinase cascade. Specificity has been thought to result from specialized roles for the two MAP kinases, Kss1 and Fus3, and because Fus3 prevents Kss1 from gaining access to the mating pathway. Kss1 has been thought to participate in mating only when Fus3 is absent. Instead, we show that Kss1 is rapidly phosphorylated and potently activated by mating pheromone in wild-type cells, and that this is required for normal pheromone-induced gene expression. Signal identity is apparently maintained because active Fus3 limits the extent of Kss1 activation, thereby preventing inappropriate signal crossover.


Asunto(s)
Proteínas Fúngicas/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Reporteros/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
11.
Proc Natl Acad Sci U S A ; 91(9): 3926-30, 1994 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-8171014

RESUMEN

The RAD3 and SSL2 gene products are essential proteins that are also required for the nucleotide excision repair pathway. We have recently demonstrated that the RAD3 gene product along with the SSL1 and TFB1 gene products are subunits of RNA polymerase II basal transcription factor b. Additionally, the SSL2 gene product physically interacts with purified factor b. Here we combine an in vitro immunoprecipitation assay and an in vivo genetic assay to demonstrate a series of pairwise protein-protein interactions involving these components. RAD3 protein binds directly to both SSL2 protein and SSL1 protein in vitro. SSL1 protein interacts with itself and with RAD3 and TFB1 proteins in living yeast cells. An N-terminal, possibly noncatalytic, domain of SSL2 protein is sufficient for the factor b-SSL2 interaction, and a product of a DNA repair-defective allele of SSL2 is not defective in binding to factor b. We present genetic evidence suggesting that the DNA-repair function of SSL2 protein is not dependent on its essential function.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Reparación del ADN , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción TFII , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Bases , Cartilla de ADN/química , Proteínas de Unión al ADN/metabolismo , Sustancias Macromoleculares , Datos de Secuencia Molecular , Unión Proteica , Saccharomyces cerevisiae , Relación Estructura-Actividad , Factor de Transcripción TFIIH
12.
Cell ; 75(7): 1379-87, 1993 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-8269516

RESUMEN

Yeast RNA polymerase II initiation factor b, homolog of human TFIIH, is a protein kinase capable of phosphorylating the C-terminal repeat domain of the polymerase; it possesses a DNA-dependent ATPase activity as well. The 85 kd and 50 kd subunits of factor b are now identified as RAD3 and SSL1 proteins, respectively; both are known to be involved in DNA repair. Factor b interacts specifically with another DNA repair protein, SSL2. The ATPase activity of factor b may be due entirely to that associated with a helicase function of RAD3. Factor b transcriptional activity was unaffected, however, by amino acid substitution at a conserved residue in the RAD3 nucleotide-binding domain, suggesting that the ATPase/helicase function is not required for transcription. These results identify factor b as a core repairosome, which may be responsible for the preferential repair of actively transcribed genes in eukaryotes.


Asunto(s)
Adenosina Trifosfatasas/fisiología , ADN Helicasas/fisiología , Reparación del ADN , Proteínas Fúngicas/fisiología , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Factores de Transcripción/fisiología , Transcripción Genética , Secuencia de Bases , Cartilla de ADN/química , Sustancias Macromoleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Factor de Transcripción TFIIH , Factores de Transcripción/química
13.
Philos Trans R Soc Lond B Biol Sci ; 347(1319): 63-8, 1995 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-7746856

RESUMEN

Nucleotide excision repair (NER) in eukaryotes is a biochemically complex process involving multiple gene products. The budding yeast Saccharomyces cerevisiae is an informative model for this process. Multiple genes and in some cases gene products that are indispensable for NER have been isolated from this organism. Homologues of many of these yeast genes are structurally and functionally conserved in higher organisms, including humans. The yeast Rad1/Rad10 heterodimeric protein complex is an endonuclease that is believed to participate in damage-specific incision of DNA during NER. This endonuclease is also required for specialized types of recombination. The products of the RAD3, SSL2(RAD25) SSL1 and TFB1 genes have dual roles in NER and in RNA polymerase II-dependent basal transcription.


Asunto(s)
Reparación del ADN , Mitosis/genética , Nucleótidos/genética , ARN Polimerasa II/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , Transcripción Genética , Nucleótidos/química , Saccharomyces cerevisiae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA