Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(11): 7408-7418, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38440849

RESUMEN

Living systems use dissipative processes to enable precise spatiotemporal control over various functions, including the transient modulation of the stiffness of tissues, which, however, is challenging to achieve in soft materials. Here, we report a new platform to program hydrogel films with tunable, time-dependent mechanical properties under out-of-equilibrium conditions, powered by electricity. We show that the lifetime of the transient network of a surface-confined hydrogel film can be effectively controlled by programming the generation of an electrochemically oxidized mediator in the presence of a chemical or photoreducing agent in solution. It is, therefore, electrically possible to direct the transient stiffening or softening of the hydrogel film, enabling high modularity of the material functions with precise spatiotemporal control. Temporally controlled operations of the hydrogel films are demonstrated for the on-demand, dose-controlled release of multiple model protein payloads from electrode arrays using the present electrically powered dissipative system. This demonstration of electrically driven transient modulation of the stiffness properties of hydrogel films represents an important step toward the engineering of dissipative materials for developing future biomedical applications that can harness the temporal, adaptive properties of this new class of materials.

2.
J Am Chem Soc ; 146(14): 9957-9966, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38547022

RESUMEN

A Fe3+-ion cross-linked carboxymethyl cellulose, Fe3+-CMC, redox-active gel exhibiting dissipative, transient stiffness properties is introduced. Chemical or photosensitized reduction of the higher-stiffness Fe3+-CMC to the lower-stiffness Fe2+-CMC gel, accompanied by the aerobic reoxidation of the Fe2+-CMC matrix, leads to the dissipative, transient stiffness, functional matrix. The light-induced, temporal, transient release of a load (Texas red dextran) and the light-triggered, transient mechanical bending of a poly-N-isopropylacrylamide (p-NIPAM)/Fe3+-CMC bilayer construct are introduced, thus demonstrating the potential use of the dissipative Fe3+-CMC gel for controlled drug release or soft robotic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA