Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 224: 938-949, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283551

RESUMEN

Chitosan (CS) and different concentration of graphitic carbon nitride (g-C3N4) (0.02 wt% and 0.04 wt%) doped barium hydroxide (Ba(OH)2) nanoparticles (NPs) were harvested through co-precipitation route. Degradation of the potentially harmful methylene blue (MB) dye and evaluation of the antibacterial potential of the produced CS/g-C3N4-doped Ba(OH)2 NPs were the primary objectives of this study. In addition, the produced NPs were analyzed through structural, optical and morphological techniques to evaluate optical features, phase formation, elemental composition, functional groups presence, surface morphology, crystallinity, and interlayer spacing. The photocatalytic activity was assessed against the degradation of MB by varying pH, whereas Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) pathogens were utilized to determine bactericidal potential in terms of inhibition zone (mm) measured through Vernier caliper. Highly (4 %) CS/g-C3N4-doped Ba(OH)2 NPs explored effective degradation and antibacterial results as 89.39 % in neutral medium and 7.85 mm against E. coli pathogens, respectively. In silico, molecular docking studies against DNA gyrase and ß-lactamase enzyme from both E. coli and S. aureus were performed to rationale mechanism governing the anti-bacterial potential of these synthesized NPs.


Asunto(s)
Quitosano , Nanopartículas , Quitosano/farmacología , Simulación del Acoplamiento Molecular , Escherichia coli , Staphylococcus aureus , Nanopartículas/química , Antibacterianos/farmacología
2.
Nanoscale Adv ; 6(1): 233-246, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38125601

RESUMEN

We have employed a co-precipitation method to synthesize different concentrations of carbon spheres (CSs) doped with cadmium sulfide (CdS) quantum dots (QDs) for catalytic reduction and antibacterial applications. Various morphological and structural characterization techniques were used to comprehensively analyze the CS effect on CdS QDs. The catalytic reduction efficiency of CS-doped CdS QDs was evaluated using rhodamine B dye. The antibacterial efficacy was also assessed against the pathogenic microorganism Escherichia coli (E. coli), and substantial destruction in the inhibitory zone was measured. Finally, the synthesized CS-doped CdS QDs demonstrated favorable results for catalytic reduction and antibacterial applications. Computational studies verified the suppressive impact of these formed QDs on DNA gyrase and ß-lactamase of E. coli.

3.
Biomater Adv ; 145: 213234, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36502548

RESUMEN

Sensors play a significant role in modern technologies and devices used in industries, hospitals, healthcare, nanotechnology, astronomy, and meteorology. Sensors based upon nanostructured materials have gained special attention due to their high sensitivity, precision accuracy, and feasibility. This review discusses the fabrication of graphene-based biosensors and gas sensors, which have highly efficient performance. Significant developments in the synthesis routes to fabricate graphene-based materials with improved structural and surface properties have boosted their utilization in sensing applications. The higher surface area, better conductivity, tunable structure, and atom-thick morphology of these hybrid materials have made them highly desirable for the fabrication of flexible and stable sensors. Many publications have reported various modification approaches to improve the selectivity of these materials. In the current work, a compact and informative review focusing on the most recent developments in graphene-based biosensors and gas sensors has been designed and delivered. The research community has provided a complete critical analysis of the most robust case studies from the latest fabrication routes to the most complex challenges. Some significant ideas and solutions have been proposed to overcome the limitations regarding the field of biosensors and hazardous gas sensors.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Grafito/química , Técnicas Electroquímicas , Nanoestructuras/química , Nanotecnología
4.
Nanoscale Adv ; 4(18): 3996-4008, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36133333

RESUMEN

Degradation in the presence of visible light is essential for successfully removing dyes from industrial wastewater, which is pivotal for environmental and ecological safety. In recent years, photocatalysis has emerged as a prominent technology for wastewater treatment. This study aimed to improve the photocatalytic efficiency of synthesized TiO2 quantum dots (QDs) under visible light by barium (Ba) doping. For this, different weight ratios (2% and 4%) of Ba-doped TiO2 QDs were synthesized under ambient conditions via a simple and modified chemical co-precipitation approach. The QD crystal structure, functional groups, optical features, charge-carrier recombination, morphological properties, interlayer spacing, and presence of dopants were analyzed. The results showed that for 4% Ba-doped TiO2, the effective photocatalytic activity in the degradation process of methylene blue (MB) dye was 99.5% in an alkaline medium. Density functional theory analysis further corroborated that the band gap energy was reduced when Ba was doped into the TiO2 lattice, implying a considerable redshift of the absorption edge due to in-gap states near the valence band.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA