Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Cell Physiol ; 237(3): 1753-1767, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34791648

RESUMEN

Aging is a physiological process that leads to a higher risk for the most devastating diseases. There are a number of theories of human aging proposed, and many of them are directly or indirectly linked to mitochondria. Here, we used mesenchymal stem cells (MSCs) from young and older donors to study age-related changes in mitochondrial metabolism. We have found that aging in MSCs is associated with a decrease in mitochondrial membrane potential and lower NADH levels in mitochondria. Mitochondrial DNA content is higher in aged MSCs, but the overall mitochondrial mass is decreased due to increased rates of mitophagy. Despite the higher level of ATP in aged cells, a higher rate of ATP consumption renders them more vulnerable to energy deprivation compared to younger cells. Changes in mitochondrial metabolism in aged MSCs activate the overproduction of reactive oxygen species in mitochondria which is compensated by a higher level of the endogenous antioxidant glutathione. Thus, energy metabolism and redox state are the drivers for the aging of MSCs/mesenchymal stromal cells.


Asunto(s)
Células Madre Mesenquimatosas , Adenosina Trifosfato/metabolismo , Anciano , Humanos , Potencial de la Membrana Mitocondrial , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Nucleic Acids Res ; 47(10): 5325-5340, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30937446

RESUMEN

Stem cell identity and plasticity are controlled by master regulatory genes and complex circuits also involving non-coding RNAs. Circular RNAs (circRNAs) are a class of RNAs generated from protein-coding genes by backsplicing, resulting in stable RNA structures devoid of free 5' and 3' ends. Little is known of the mechanisms of action of circRNAs, let alone in stem cell biology. In this study, for the first time, we determined that a circRNA controls mesenchymal stem cell (MSC) identity and differentiation. High-throughput MSC expression profiling from different tissues revealed a large number of expressed circRNAs. Among those, circFOXP1 was enriched in MSCs compared to differentiated mesodermal derivatives. Silencing of circFOXP1 dramatically impaired MSC differentiation in culture and in vivo. Furthermore, we demonstrated a direct interaction between circFOXP1 and miR-17-3p/miR-127-5p, which results in the modulation of non-canonical Wnt and EGFR pathways. Finally, we addressed the interplay between canonical and non-canonical Wnt pathways. Reprogramming to pluripotency of MSCs reduced circFOXP1 and non-canonical Wnt, whereas canonical Wnt was boosted. The opposing effect was observed during generation of MSCs from human pluripotent stem cells. Our results provide unprecedented evidence for a regulatory role for circFOXP1 as a gatekeeper of pivotal stem cell molecular networks.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , MicroARNs/metabolismo , ARN , Proteínas Represoras/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Proliferación Celular , Citoplasma/metabolismo , Receptores ErbB/metabolismo , Exorribonucleasas/metabolismo , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Silenciador del Gen , Células HEK293 , Humanos , Inmunofenotipificación , Células Madre Mesenquimatosas/citología , Mesodermo/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre Pluripotentes/citología , ARN Circular , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ARN , Células Madre/citología , Proteínas Wnt/metabolismo
3.
Int J Mol Sci ; 20(4)2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30791553

RESUMEN

Recently, we found a strict bone association between Fibroblast growth factor 23 (FGF23) and Fetuin-A, both involved in cardiovascular and mineral bone disorders. In this study, an uninvestigated bone marrow positivity for both was found. Though the role of exogenous FGF23 on mesenchymal cells (MSCs) was reported, no information is as yet available on the possible production of this hormone by MSCs. To further analyze these uninvestigated aspects, we studied human primary cells and mouse and human cell lines by means of immunostaining, qRT-PCR, enzyme linked immunosorbent assays, chromatin immunoprecipitation, transfection, and a streamlined approach for the FGF23⁻Fetuin-A interaction called Duolink proximity ligation assay. Mesenchymal cells produce but do not secrete FGF23 and its expression increases during osteo-differentiation. Fibroblast growth factor 23 is also involved in the regulation of Fetuin-A by binding directly to the Fetuin-A promoter and then activating its transcription. Both FGF23 overexpression and addition induced an upregulation of Fetuin-A in the absence of osteo-inducer factors. Fibroblast growth factor 23 and Fetuin-A promoter were increased by osteo-inducer factors with this effect being abolished after FGF23 silencing. In conclusion, both FGF23 and Fetuin-A are present and strictly linked to each other in MSCs with FGF23 driving Fetuin-A production. This mechanism suggests a role for these two proteins in the osteoblast differentiation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , alfa-2-Glicoproteína-HS/metabolismo , Animales , Biomarcadores , Línea Celular , Factor-23 de Crecimiento de Fibroblastos , Expresión Génica , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Osteogénesis/genética , Unión Proteica
4.
Stem Cells ; 35(4): 1093-1105, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28164431

RESUMEN

Mesenchymal stem cells (MSC) are multipotent cells able to differentiate into several cell types, hence providing cell reservoirs for therapeutic applications. The absence of detectable MSC homing at injury sites suggests that paracrine functions could, at least in part, be mediated by extracellular vesicles (EVs); EVs are newly identified players that are studied mainly as predictive or diagnostic biomarkers. Together with their clinical interests, EVs have recently come to the fore for their role in cell-to-cell communication. In this context, we investigated gene-based communication mechanisms in EVs generated by bone marrow and umbilical cord blood MSC (BMMSC and CBMSC, respectively). Both MSC types released vesicles with similar physical properties, although CBMSC were able to secrete EVs with faster kinetics. A pattern of preferentially incorporated EV transcripts was detected with respect to random internalization from the cytosol, after a validated normalization procedure was established. In the paradigm where EVs act as bioeffectors educating target cells, we demonstrated that kidney tubular cells lacking IL-10 expression and exposed to BMMSC-EVs and CBMSC-EVs acquired the IL-10 mRNA, which was efficiently translated into the corresponding protein. These findings suggest that horizontal mRNA transfer through EVs is a new mechanism in the MSC restoring ability observed in vivo that is here further demonstrated in an in vitro rescue model after acute cisplatin injury of tubular cells. Stem Cells 2017;35:1093-1105.


Asunto(s)
Comunicación Celular , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Regiones no Traducidas 3'/genética , Vesículas Extracelulares/ultraestructura , Humanos , Interleucina-10/genética , Interleucina-10/metabolismo , Cinética , Células Madre Mesenquimatosas/ultraestructura , Modelos Biológicos , Compuestos Orgánicos/metabolismo , Biosíntesis de Proteínas , Transporte de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Coloración y Etiquetado , Transcripción Genética
5.
Cells ; 13(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38920694

RESUMEN

Background Recently, mesenchymal stromal cells (MSCs) have gained recognition for their clinical utility in transplantation to induce tolerance and to improve/replace pharmacological immunosuppression. Cord blood (CB)-derived MSCs are particularly attractive for their immunological naivety and peculiar anti-inflammatory and anti-apoptotic properties. OBJECTIVES: The objective of this study was to obtain an inventory of CB MSCs able to support large-scale advanced therapy medicinal product (ATMP)-based clinical trials. STUDY DESIGN: We isolated MSCs by plastic adherence in a GMP-compliant culture system. We established a well-characterized master cell bank and expanded a working cell bank to generate batches of finished MSC(CB) products certified for clinical use. The MSC(CB) produced by our facility was used in approved clinical trials or for therapeutic use, following single-patient authorization as an immune-suppressant agent. RESULTS: We show the feasibility of a well-defined MSC manufacturing process and describe the main indications for which the MSCs were employed. We delve into a regulatory framework governing advanced therapy medicinal products (ATMPs), emphasizing the need of stringent quality control and safety assessments. From March 2012 to June 2023, 263 of our Good Manufacturing Practice (GMP)-certified MSC(CB) preparations were administered as ATMPs in 40 subjects affected by Graft-vs.-Host Disease, nephrotic syndrome, or bronco-pulmonary dysplasia of the newborn. There was no infusion-related adverse event. No patient experienced any grade toxicity. Encouraging preliminary outcome results were reported. Clinical response was registered in the majority of patients treated under therapeutic use authorization. CONCLUSIONS: Our 10 years of experience with MSC(CB) described here provides valuable insights into the use of this innovative cell product in immune-mediated diseases.


Asunto(s)
Sangre Fetal , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Control de Calidad , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Sangre Fetal/citología , Femenino , Trasplante de Células Madre Mesenquimatosas/métodos , Masculino , Adulto , Persona de Mediana Edad , Adolescente , Anciano , Adulto Joven , Niño
6.
Biotechnol Rep (Amst) ; 33: e00708, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35198419

RESUMEN

Human induced pluripotent stem cells (hiPSCs) must be manufactured as advanced therapy medicinal products (ATMPs) for innovative tissue replacement clinical applications. Yet, production of hiPSCs under current Good Manufacturing Practice (cGMP) presents many hurdles, such as the large-scale cell expansion needed to reach therapeutically-relevant hiPSC doses. For the monitoring of this phase, a fast and reliable cell counting method should be used. Conventional manual cell counting by the hemocytometer method is dependent on the operator's expertise and is time-consuming. Therefore, automation of sample preparation and analysis is needed to improve precision and rapidity of hiPSC cell counting. We investigated whether an automated cell counting method could be validated for use with hiPSCs, in comparison with a reference cell counting method included in the European Pharmacopeia, 10th edition. The proposed method was the fluorescence imaging-based NucleoCounter NC-100 system, whereas the reference method was manual cell counting using a Bürker hemocytometer. The validation strategy complied with EudraLex cGMP regulations for ATMP manufacturing and ICH Q2(R1) indications for validation of analytical methods. The use of the NucleoCounter NC-100 system for automated cell counting was validated, focusing on accuracy, specificity, intra- and inter-operator reproducibility, range and linearity, showing higher precision than the manual method. The automated method can be used more effectively than the manual one for hiPSC cell counting. Thus, this piece of work paves the way for all cGMP facilities that want to pursue hiPSC manufacturing for clinical use.

7.
Mater Today Bio ; 16: 100286, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36186846

RESUMEN

Irinotecan (CTP-11) is one of the standard therapies for colorectal cancer (CRC). CTP-11 is enzymatically converted to the hydrophobic 7-ethyl-10-hydroxycamptothecin (SN38), a one hundred-fold more active metabolite. Conjugation of hydrophobic anticancer drugs to nanomaterials is a strategy to improve their solubility, efficacy, and selectivity. Carbon dots (CDs) have garnered interest for their small sizes (<10 â€‹nm), low toxicity, high water solubility, and bright fluorescence. This paper describes the use of CDs to improve drug vehiculation, stability, and chemotherapeutic efficiency of SN38 through a direct intracellular uptake in CRC. The covalent conjugation of SN38 to CDs via a carbamate bond provides a CD-SN38 hybrid material for slow, sustained, and pH-responsive drug release. CD-SN38 successfully penetrates the CRC cells with a release in the nucleus affecting first the cell cycle and then the cytoskeleton. Moreover, CD-SN38 leads to a deregulation of the extracellular matrix (ECM), one of the major components of the cancer niche considered a possible target therapy for reducing the cancer progression. This work shows the combined therapeutic and imaging potential of CD-based hybrid materials for the treatment of CRC. Future efforts for targeted therapy of chronic diseases characterized by altered ECM deposition, such as chronic kidney disease and chronic allograft nephropathy in kidney transplant patients are envisaged.

8.
J Extracell Biol ; 1(10): e63, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38939213

RESUMEN

Extracellular vesicles (EVs) large-scale production is a crucial point for the translation of EVs from discovery to application of EV-based products. In October 2021, the International Society for Extracellular Vesicles (ISEV), along with support by the FET-OPEN projects, "The Extracellular Vesicle Foundry" (evFOUNDRY) and "Extracellular vesicles from a natural source for tailor-made nanomaterials" (VES4US), organized a workshop entitled "massivEVs" to discuss the potential challenges for translation of EV-based products. This report gives an overview of the topics discussed during "massivEVs", the most important points raised, and the points of consensus reached after discussion among academia and industry representatives. Overall, the review of the existing EV manufacturing, upscaling challenges and directions for their resolution highlighted in the workshop painted an optimistic future for the expanding EV field.

9.
BioDrugs ; 35(6): 693-714, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34727354

RESUMEN

Human induced pluripotent stem cells (hiPSCs) are manufactured as advanced therapy medicinal products for tissue replacement applications. With this aim, the feasibility of hiPSC large-scale expansion in existing bioreactor systems under current good manufacturing practices (cGMP) has been tested. Yet, these attempts have lacked a paradigm shift in culture settings and technologies tailored to hiPSCs, which jeopardizes their clinical translation. The best approach for industrial scale-up of high-quality hiPSCs is to design their manufacturing process by following quality-by-design (QbD) principles: a scientific, risk-based framework for process design based on relating product and process attributes to product quality. In this review, we analyzed the hiPSC expansion manufacturing process implementing the QbD approach in the use of bioreactors, stressing the decisive role played by the cell quantity, quality and costs, drawing key QbD concepts directly from the guidelines of the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use.


Asunto(s)
Células Madre Pluripotentes Inducidas , Reactores Biológicos , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos
10.
Sci Rep ; 11(1): 6751, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762629

RESUMEN

Bone marrow mesenchymal stem/stromal cells (BMSCs) show great promise for bone repair, however they are isolated by an invasive bone marrow harvest and their regenerative potential decreases with age. Conversely, cord blood can be collected non-invasively after birth and contains MSCs (CBMSCs) that can be stored for future use. However, whether CBMSCs can replace BMSCs targeting bone repair is unknown. This study evaluates the in vitro osteogenic potential of unprimed, osteogenically primed, or chondrogenically primed CBMSCs and BMSCs and their in vivo bone forming capacity following ectopic implantation on biphasic calcium phosphate ceramics in nude mice. In vitro, alkaline phosphatase (intracellular, extracellular, and gene expression), and secretion of osteogenic cytokines (osteoprotegerin and osteocalcin) was significantly higher in BMSCs compared with CBMSCs, while CBMSCs demonstrated superior chondrogenic differentiation and secretion of interleukins IL-6 and IL-8. BMSCs yielded significantly more cell engraftment and ectopic bone formation compared to CBMSCs. However, priming of CBMSCs with either chondrogenic or BMP-4 supplements led to bone formation by CBMSCs. This study is the first direct quantification of the bone forming abilities of BMSCs and CBMSCs in vivo and, while revealing the innate superiority of BMSCs for bone repair, it provides avenues to induce osteogenesis by CBMSCs.


Asunto(s)
Proteína Morfogenética Ósea 4/genética , Diferenciación Celular/genética , Condrogénesis/genética , Sangre Fetal/citología , Hidroxiapatitas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Adulto , Biomarcadores , Proteína Morfogenética Ósea 4/metabolismo , Sustitutos de Huesos , Células Cultivadas , Citocinas/metabolismo , Humanos , Inmunohistoquímica , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos , Adulto Joven
11.
Antioxidants (Basel) ; 10(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202031

RESUMEN

BACKGROUND: Progressive supranuclear palsy (PSP) is a progressive movement disorder associated with lipid peroxidation and intracerebral accumulation of tau. RT001 is a deuterium reinforced isotopologue of linoleic acid that prevents lipid peroxidation (LPO) through the kinetic isotope effect. METHODS: The effects of RT001 pre-treatment on various oxidative and bioenergetic parameters were evaluated in mesenchymal stem cells (MSC) derived from patients with PSP compared to controls. In parallel, 3 patients with PSP were treated with RT001 and followed clinically. RESULTS: MSCs derived from PSP patients had a significantly higher rate of LPO (161.8 ± 8.2% of control; p < 0.001). A 72-h incubation with RT001 restored the PSP MSCs to normal levels. Mitochondrial reactive oxygen species (ROS) overproduction in PSP-MSCs significantly decreased the level of GSH compared to control MSCs (to 56% and 47% of control; p < 0.05). Incubation with RT001 significantly increased level of GSH in PSP MSCs. The level of mitochondrial DNA in the cells was significantly lower in PSP-MSCs (67.5%), compared to control MSCs. Changes in mitochondrial membrane potential, size, and shape were also observed. Three subjects with possible or probable PSP were treated with RT001 for a mean duration of 26 months. The slope of the PSPRS changed from the historical decline of 0.91 points/month to a mean decline of 0.16 points/month (+/-0.23 SEM). The UPDRS slope changed from an expected increase of 0.95 points/month to an average increase in score of 0.28 points/month (+/-0.41 SEM). CONCLUSIONS: MSCs derived from patients with PSP have elevated basal levels of LPO, ROS, and mitochondrial dysfunction. These findings are reversed after incubation with RT001. In PSP patients, the progression of disease may be reduced by treatment with RT001.

12.
Stem Cell Res Ther ; 11(1): 94, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32127043

RESUMEN

BACKGROUND: Organoids are three-dimensional in vitro-grown cell clusters that recapitulate key features of native organs. In regenerative medicine, organoid technology represents a promising approach for the replacement of severely damaged organs, such as the pancreas in patients with type 1 diabetes. Isolation human pancreas organoids (hPOs) in chemically defined serum-free culture media would be a major milestone for this approach. METHODS: Starting from discarded pancreatic tissues, we developed a large-scale process for obtaining clinically relevant quantities of undifferentiated organoids, obviating enzymatic digestion and operator-dependent pancreatic ducts picking steps. hPO identity was characterized by molecular and flow cytometry analysis. RESULTS: This work demonstrates that it is possible to obtain a large-scale production of organoids. We introduced some innovations in the isolation, expansion, and freezing of hPOs from five donors. First of all, the choice of the starting material (islet-depleted pancreas) that allows obtaining a high quantity of hPOs at low passages. On the other hand, we introduced mechanical dissociation and we eliminated the picking step to exclude the operator-depending steps, without affecting the success of the culture (100% success rate). Another important improvement was to replace R-spondin-1 (Rspo1) conditioned medium with Rspo1 recombinant molecule to obtain a well-defined composition of the expansion medium. Finally, we implemented a GMP-compliant freezing protocol. hPOs showed exponential growth with diameter and area that increased three- and eight-fold in 7 days, respectively. Immunophenotypic profile and gene expression analysis revealed that hPOs were composed of ductal (82.33 ± 8.37%), acinar (2.80 ± 1.25%) cells, and pancreatic progenitors (5.81 ± 2.65%). CONCLUSION: This work represents a milestone for a GMP-compliance hPO production and, ultimately, their clinical application as a type 1 diabetes therapy.


Asunto(s)
Organoides , Páncreas , Medios de Cultivo , Humanos , Conductos Pancreáticos , Medicina Regenerativa
13.
EBioMedicine ; 57: 102848, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32574961

RESUMEN

BACKGROUND: Adult skin fibroblasts represent the most common starting cell type used to generate human induced pluripotent stem cells (F-hiPSC) for clinical studies. Yet, a foetal source would offer unique advantages, primarily the absence of accumulated somatic mutations. Herein, we generated hiPSC from cord blood multipotent mesenchymal stromal cells (MSC-hiPSC) and compared them with F-hiPSC. Assessment of the full activation of the pluripotency gene regulatory network (PGRN) focused on circular RNA (circRNA), recently proposed to participate in the control of pluripotency. METHODS: Reprogramming was achieved by a footprint-free strategy. Self-renewal and pluripotency of cord blood MSC-hiPSC were investigated in vitro and in vivo, compared to parental MSC, to embryonic stem cells and to F-hiPSC. High-throughput array-based approaches and bioinformatics analyses were applied to address the PGRN. FINDINGS: Cord blood MSC-hiPSC successfully acquired a complete pluripotent identity. Functional comparison with F-hiPSC showed no differences in terms of i) generation of mesenchymal-like derivatives, ii) their subsequent adipogenic, osteogenic and chondrogenic commitment, and iii) their hematopoietic support ability. At the transcriptional level, specific subsets of mRNA, miRNA and circRNA (n = 4,429) were evidenced, casting a further layer of complexity on the PGRN regulatory crosstalk. INTERPRETATION: A circRNA map of transcripts associated to naïve and primed pluripotency is provided for hiPSC of clinical-grade foetal origin, offering insights on still unreported regulatory circuits of the PGRN to consider for the optimization and development of efficient differentiation protocols for clinical translation. FUNDING: This research was funded by Ricerca Corrente 2012-2018 by the Italian Ministry of Health.


Asunto(s)
Diferenciación Celular/genética , Reprogramación Celular/genética , Sangre Fetal/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Células Cultivadas , Sangre Fetal/metabolismo , Feto/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Humanos , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Mutación/genética , Osteogénesis/genética , ARN Circular/genética , ARN Mensajero/genética
14.
Cells ; 8(12)2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31783568

RESUMEN

The therapeutic potential of mesenchymal stem cell (MSC) extracellular vesicles (EV) is currently under investigation in many pathological contexts. Both adult and perinatal MSC are being considered as sources of EV. Herein, we address antigen expression of cord blood and bone marrow MSC and released EV to define an identity and quality parameter of MSC EV as a medicinal product in the context of clinical applications. The research focuses on EV-shuttled neural/glial antigen 2 (NG2), which has previously been detected as a promising surface marker to distinguish perinatal versus adult MSC. Indeed, NG2 was significantly more abundant in cord blood than bone marrow MSC and MSC EV. Ultracentrifuge-isolated EV were then challenged for their pro-angiogenic properties on an xCELLigence system as quality control. NG2+ cord blood MSC EV, but not bone marrow MSC EV, promote bFGF and PDGF-AA proliferative effect on endothelial cells. Likewise, they successfully rescue angiostatin-induced endothelial cell growth arrest. In both cases, the effects are NG2-dependent. These results point at NG2 as an identity and quality parameter for cord blood MSC EV, paving the way for their clinical translation.


Asunto(s)
Antígenos/metabolismo , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Células Madre Mesenquimatosas , Proteoglicanos/metabolismo , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
15.
Sci Rep ; 9(1): 15420, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659213

RESUMEN

Metabolism and mitochondrial biology have gained a prominent role as determinants of stem cell fate and function. In the context of regenerative medicine, innovative parameters predictive of therapeutic efficacy could be drawn from the association of metabolic or mitochondrial parameters to different degrees of stemness and differentiation potentials. Herein, this possibility was addressed in human mesenchymal stromal/stem cells (hMSC) previously shown to differ in lifespan and telomere length. First, these hMSC were shown to possess significantly distinct proliferation rate, senescence status and differentiation capacity. More potential hMSC were associated to higher mitochondrial (mt) DNA copy number and lower mtDNA methylation. In addition, they showed higher expression levels of oxidative phosphorylation subunits. Consistently, they exhibited higher coupled oxygen consumption rate and lower transcription of glycolysis-related genes, glucose consumption and lactate production. All these data pointed at oxidative phosphorylation-based central metabolism as a feature of higher stemness-associated hMSC phenotypes. Consistently, reduction of mitochondrial activity by complex I and III inhibitors in higher stemness-associated hMSC triggered senescence. Finally, functionally higher stemness-associated hMSC showed metabolic plasticity when challenged by glucose or glutamine shortage, which mimic bioenergetics switches that hMSC must undergo after transplantation or during self-renewal and differentiation. Altogether, these results hint at metabolic and mitochondrial parameters that could be implemented to identify stem cells endowed with superior growth and differentiation potential.


Asunto(s)
Proliferación Celular , ADN Mitocondrial/metabolismo , Sangre Fetal/metabolismo , Glucólisis , Células Madre Mesenquimatosas/metabolismo , Fosforilación Oxidativa , Variaciones en el Número de Copia de ADN , Sangre Fetal/citología , Humanos , Células Madre Mesenquimatosas/citología
16.
J Thorac Dis ; 10(Suppl 20): S2423-S2430, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30123580

RESUMEN

Lung transplantation is the only therapeutic option for end-stage pulmonary failure. Nevertheless, the shortage of donor pool available for transplantation does not allow to satisfy the requests, thus the mortality on the waiting list remains high. One of the tools to overcome the donor pool shortage is the use of ex-vivo lung perfusion (EVLP) to preserve, evaluate and recondition selected lung grafts not otherwise suitable for transplantation. EVLP is nowadays a clinical reality and have several destinations of use. After a narrative review of the literature and looking at our experience we can assume that one of the chances to improve the outcome of lung transplantation and to overcome the donor pool shortage could be the tissue regeneration of the graft during EVLP and the immunomodulation of the recipient. Both these strategies are performed using mesenchymal stem cells (MSC). The results of the models of lung perfusion with MSC-based cell therapy open the way to a new innovative approach that further increases the potential for using of the lung perfusion platform.

17.
Redox Biol ; 14: 474-484, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29096320

RESUMEN

Sporadic cases account for 90-95% of all patients with Parkinson's Disease (PD). Atypical Parkinsonism comprises approximately 20% of all patients with parkinsonism. Progressive Supranuclear Palsy (PSP) belongs to the atypical parkinsonian diseases and is histopathologically classified as a tauopathy. Here, we report that mesenchymal stem cells (MSCs) derived from the bone marrow of patients with PSP exhibit mitochondrial dysfunction in the form of decreased membrane potential and inhibited NADH-dependent respiration. Furthermore, mitochondrial dysfunction in PSP-MSCs led to a significant increase in mitochondrial ROS generation and oxidative stress, which resulted in decrease of major cellular antioxidant GSH. Additionally, higher basal rate of mitochondrial degradation and lower levels of biogenesis were found in PSP-MSCs, together leading to a reduction in mitochondrial mass. This phenotype was biologically relevant to MSC stemness properties, as it heavily impaired their differentiation into adipocytes, which mostly rely on mitochondrial metabolism for their bioenergetic demand. The defect in adipogenic differentiation was detected as a significant impairment of intracellular lipid droplet formation in PSP-MSCs. This result was corroborated at the transcriptional level by a significant reduction of PPARγ and FABP4 expression, two key genes involved in the adipogenic molecular network. Our findings in PSP-MSCs provide new insights into the etiology of 'idiopathic' parkinsonism, and confirm that mitochondrial dysfunction is important to the development of parkinsonism, independent of the type of the cell.


Asunto(s)
Células Madre Mesenquimatosas/patología , Mitocondrias/patología , Trastornos Parkinsonianos/patología , Parálisis Supranuclear Progresiva/patología , Diferenciación Celular , Células Cultivadas , Humanos , Potencial de la Membrana Mitocondrial , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Mitofagia , NAD/metabolismo , Estrés Oxidativo , Trastornos Parkinsonianos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Parálisis Supranuclear Progresiva/metabolismo
18.
Sci Rep ; 8(1): 9321, 2018 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-29915318

RESUMEN

Human multipotent mesenchymal stromal cells (MSC) are isolated from a plethora of tissue sources for cell therapy purposes. In 2006, the International Society for Cellular Therapy (ISCT) published minimal guidelines to define MSC identity. Nevertheless, many independent studies demonstrated that cells meeting the ISCT criteria possessed heterogeneous phenotypes and functionalities, heavily influenced by culture conditions. In this study, human MSC derived from many adult (bone marrow and adipose tissue) or fetal (cord blood, Wharton's jelly, umbilical cord perivascular compartment and amniotic fluid) tissues were investigated. Their immunophenotype was analyzed to define consistent source-specific markers by extensive flow cytometry analysis and real-time qRT-PCR. CD271+ subpopulations were detected in adult MSC, whereas NG2 was significantly more expressed in fetal MSC but failed validation on independent samples coming from an external laboratory. The highest number of CD271+ adult MSC were detected soon after isolation in serum-based culture conditions. Furthermore, heterogeneous percentages of CD271 expression were found in platelet lysate-based or serum-free culture conditions. Finally, CD271+ adult MSC showed high clonogenic and osteogenic properties as compared to CD271- cells. To conclude, in this phenotype-function correlation study CD271+ subpopulation confers heterogeneity on adult MSC, confirming the need of more specific markers to address MSC properties.


Asunto(s)
Adapaleno/metabolismo , Células Madre Adultas/metabolismo , Células Madre Fetales/metabolismo , Células Madre Mesenquimatosas/metabolismo , Adulto , Biomarcadores/metabolismo , Forma de la Célula , Células Cultivadas , Células Clonales , Análisis por Conglomerados , Humanos , Inmunofenotipificación , Persona de Mediana Edad , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo
19.
Sci Rep ; 7(1): 6962, 2017 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-28761170

RESUMEN

Transplantation of human bone marrow mesenchymal stromal cells (hBM-MSC) promotes functional recovery after stroke in animal models, but the mechanisms underlying these effects remain incompletely understood. We tested the efficacy of Good Manufacturing Practices (GMP) compliant hBM-MSC, injected intravenously 3.5 hours after injury in mice subjected to transient middle cerebral artery occlusion (tMCAo). We addressed whether hBM-MSC are efficacious and if this efficacy is associated with cortical circuit reorganization using neuroanatomical analysis of GABAergic neurons (parvalbumin; PV-positive cells) and perineuronal nets (PNN), a specialized extracellular matrix structure which acts as an inhibitor of neural plasticity. tMCAo mice receiving hBM-MSC, showed early and lasting improvement of sensorimotor and cognitive functions compared to control tMCAo mice. Furthermore, 5 weeks post-tMCAo, hBM-MSC induced a significant rescue of ipsilateral cortical neurons; an increased proportion of PV-positive neurons in the perilesional cortex, suggesting GABAergic interneurons preservation; and a lower percentage of PV-positive cells surrounded by PNN, indicating an enhanced plastic potential of the perilesional cortex. These results show that hBM-MSC improve functional recovery and stimulate neuroprotection after stroke. Moreover, the downregulation of "plasticity brakes" such as PNN suggests that hBM-MSC treatment stimulates plasticity and formation of new connections in the perilesional cortex.


Asunto(s)
Isquemia Encefálica/terapia , Neuronas GABAérgicas/fisiología , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/citología , Accidente Cerebrovascular/terapia , Animales , Isquemia Encefálica/etiología , Isquemia Encefálica/fisiopatología , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Infusiones Intravenosas , Ratones , Plasticidad Neuronal , Recuperación de la Función , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/fisiopatología , Resultado del Tratamiento
20.
Cell Transplant ; 25(8): 1501-14, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26850072

RESUMEN

During the last decade it has been demonstrated that mesenchymal progenitors are present and can be isolated also from cord blood (CB). Recently, we managed to set up a standard protocol allowing the isolation of mesenchymal stromal cells (MSCs) with high proliferative potential and multiple differentiation capabilities, whereas the generation rate of MSC-initiating colonies could still be further improved. Herein, we strikingly succeeded in defining some simple and basic culture conditions based on the use of a chemically defined medium that increased the colony isolation efficiency up to almost 80% of processed CB units. Importantly, this result was achieved irrespective of CB unit white blood cell content and time elapsed from delivery, two limiting parameters involved with processing CB units. Thus, this high efficiency is guaranteed without strict selection of the starting material. In addition, since we are profoundly concerned about how different culture conditions can influence cell behavior, we devoted part of this study to in-depth characterization of the established CB-MSC populations to confirm their stemness features in this novel isolation and culture system. Therefore, an extended study of their immunophenotype, including classical pericytic markers, and a detailed molecular analysis addressing telomere length and also stemness-related microRNA contribution were performed. In summary, we propose a straightforward, extremely efficient, and reliable approach to isolate and expand thoroughly characterized CB-MSCs, even when poor-quality CB units are the only available source, or there is no space for an isolation to fail.


Asunto(s)
Sangre Fetal/citología , Células Madre Mesenquimatosas/citología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula , Células Cultivadas , Citometría de Flujo , Humanos , Inmunofenotipificación , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA