Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 589(7841): 207-210, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33442041

RESUMEN

Magnetars are neutron stars with extremely strong magnetic fields (1013 to 1015 gauss)1,2, which episodically emit X-ray bursts approximately 100 milliseconds long and with energies of 1040 to 1041 erg. Occasionally, they also produce extremely bright and energetic giant flares, which begin with a short (roughly 0.2 seconds), intense flash, followed by fainter, longer-lasting emission that is modulated by the spin period of the magnetar3,4 (typically 2 to 12 seconds). Over the past 40 years, only three such flares have been observed in our local group of galaxies3-6, and in all cases the extreme intensity of the flares caused the detectors to saturate. It has been proposed that extragalactic giant flares are probably a subset7-11 of short γ-ray bursts, given that the sensitivity of current instrumentation prevents us from detecting the pulsating tail, whereas the initial bright flash is readily observable out to distances of around 10 to 20 million parsecs. Here we report X-ray and γ-ray observations of the γ-ray burst GRB 200415A, which has a rapid onset, very fast time variability, flat spectra and substantial sub-millisecond spectral evolution. These attributes match well with those expected for a giant flare from an extragalactic magnetar12, given that GRB 200415A is directionally associated13 with the galaxy NGC 253 (roughly 3.5 million parsecs away). The detection of three-megaelectronvolt photons provides evidence for the relativistic motion of the emitting plasma. Radiation from such rapidly moving gas around a rotating magnetar may have generated the rapid spectral evolution that we observe.

2.
Nature ; 462(7271): 331-4, 2009 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-19865083

RESUMEN

A cornerstone of Einstein's special relativity is Lorentz invariance-the postulate that all observers measure exactly the same speed of light in vacuum, independent of photon-energy. While special relativity assumes that there is no fundamental length-scale associated with such invariance, there is a fundamental scale (the Planck scale, l(Planck) approximately 1.62 x 10(-33) cm or E(Planck) = M(Planck)c(2) approximately 1.22 x 10(19) GeV), at which quantum effects are expected to strongly affect the nature of space-time. There is great interest in the (not yet validated) idea that Lorentz invariance might break near the Planck scale. A key test of such violation of Lorentz invariance is a possible variation of photon speed with energy. Even a tiny variation in photon speed, when accumulated over cosmological light-travel times, may be revealed by observing sharp features in gamma-ray burst (GRB) light-curves. Here we report the detection of emission up to approximately 31 GeV from the distant and short GRB 090510. We find no evidence for the violation of Lorentz invariance, and place a lower limit of 1.2E(Planck) on the scale of a linear energy dependence (or an inverse wavelength dependence), subject to reasonable assumptions about the emission (equivalently we have an upper limit of l(Planck)/1.2 on the length scale of the effect). Our results disfavour quantum-gravity theories in which the quantum nature of space-time on a very small scale linearly alters the speed of light.

3.
Rev Sci Instrum ; 86(3): 033302, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25832218

RESUMEN

Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper, we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool's numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from particle-in-cell or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field "primitives" is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using ∼10(8) particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of ∼10 mm(3). Insights derived from this application show that the tool can support understanding of HED plasmas.

4.
Science ; 343(6166): 51-4, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24263132

RESUMEN

Gamma-ray burst (GRB) 130427A is one of the most energetic GRBs ever observed. The initial pulse up to 2.5 seconds is possibly the brightest well-isolated pulse observed to date. A fine time resolution spectral analysis shows power-law decays of the peak energy from the onset of the pulse, consistent with models of internal synchrotron shock pulses. However, a strongly correlated power-law behavior is observed between the luminosity and the spectral peak energy that is inconsistent with curvature effects arising in the relativistic outflow. It is difficult for any of the existing models to account for all of the observed spectral and temporal behaviors simultaneously.

5.
Science ; 343(6166): 42-7, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24263133

RESUMEN

The observations of the exceptionally bright gamma-ray burst (GRB) 130427A by the Large Area Telescope aboard the Fermi Gamma-ray Space Telescope provide constraints on the nature of these unique astrophysical sources. GRB 130427A had the largest fluence, highest-energy photon (95 GeV), longest γ-ray duration (20 hours), and one of the largest isotropic energy releases ever observed from a GRB. Temporal and spectral analyses of GRB 130427A challenge the widely accepted model that the nonthermal high-energy emission in the afterglow phase of GRBs is synchrotron emission radiated by electrons accelerated at an external shock.

6.
Science ; 339(6121): 807-11, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23413352

RESUMEN

Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.

7.
Science ; 327(5969): 1103-6, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20056857

RESUMEN

Recent observations of supernova remnants (SNRs) hint that they accelerate cosmic rays to energies close to ~10(15) electron volts. However, the nature of the particles that produce the emission remains ambiguous. We report observations of SNR W44 with the Fermi Large Area Telescope at energies between 2 x 10(8) electron volts and 3 x10(11) electron volts. The detection of a source with a morphology corresponding to the SNR shell implies that the emission is produced by particles accelerated there. The gamma-ray spectrum is well modeled with emission from protons and nuclei. Its steepening above approximately 10(9) electron volts provides a probe with which to study how particle acceleration responds to environmental effects such as shock propagation in dense clouds and how accelerated particles are released into interstellar space.

8.
Science ; 323(5922): 1688-93, 2009 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-19228997

RESUMEN

Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gammaray energy. In September 2008, Fermi observed the exceptionally luminous GRB 080916C, with the largest apparent energy release yet measured. The high-energy gamma rays are observed to start later and persist longer than the lower energy photons. A simple spectral form fits the entire GRB spectrum, providing strong constraints on emission models. The known distance of the burst enables placing lower limits on the bulk Lorentz factor of the outflow and on the quantum gravity mass.

9.
Science ; 325(5942): 840-4, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19574346

RESUMEN

Pulsars are rapidly rotating, highly magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently only seven were observed to pulse in gamma rays, and these were all discovered at other wavelengths. The Fermi Large Area Telescope (LAT) makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics, and the energetics of pulsar wind nebulae and supernova remnants.

10.
Science ; 325(5942): 848-52, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19574349

RESUMEN

Pulsars are born with subsecond spin periods and slow by electromagnetic braking for several tens of millions of years, when detectable radiation ceases. A second life can occur for neutron stars in binary systems. They can acquire mass and angular momentum from their companions, to be spun up to millisecond periods and begin radiating again. We searched Fermi Large Area Telescope data for pulsations from all known millisecond pulsars (MSPs) outside of globular clusters, using rotation parameters from radio telescopes. Strong gamma-ray pulsations were detected for eight MSPs. The gamma-ray pulse profiles and spectral properties resemble those of young gamma-ray pulsars. The basic emission mechanism seems to be the same for MSPs and young pulsars, with the emission originating in regions far from the neutron star surface.

11.
Science ; 322(5905): 1218-21, 2008 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18927355

RESUMEN

Energetic young pulsars and expanding blast waves [supernova remnants (SNRs)] are the most visible remains after massive stars, ending their lives, explode in core-collapse supernovae. The Fermi Gamma-Ray Space Telescope has unveiled a radio quiet pulsar located near the center of the compact synchrotron nebula inside the supernova remnant CTA 1. The pulsar, discovered through its gamma-ray pulsations, has a period of 316.86 milliseconds and a period derivative of 3.614 x 10(-13) seconds per second. Its characteristic age of 10(4) years is comparable to that estimated for the SNR. We speculate that most unidentified Galactic gamma-ray sources associated with star-forming regions and SNRs are such young pulsars.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA