Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 145(11): 3872-3885, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-35136953

RESUMEN

Mutations in nitrogen permease regulator-like 3 (NPRL3), a component of the GATOR1 complex within the mTOR pathway, are associated with epilepsy and malformations of cortical development. Little is known about the effects of NPRL3 loss on neuronal mTOR signalling and morphology, or cerebral cortical development and seizure susceptibility. We report the clinical phenotypic spectrum of a founder NPRL3 pedigree (c.349delG, p.Glu117LysFS; n = 133) among Old Order Mennonites dating to 1727. Next, as a strategy to define the role of NPRL3 in cortical development, CRISPR/Cas9 Nprl3 knockout in Neuro2a cells in vitro and in foetal mouse brain in vivo was used to assess the effects of Nprl3 knockout on mTOR activation, subcellular mTOR localization, nutrient signalling, cell morphology and aggregation, cerebral cortical cytoarchitecture and network integrity. The NPRL3 pedigree exhibited an epilepsy penetrance of 28% and heterogeneous clinical phenotypes with a range of epilepsy semiologies, i.e. focal or generalized onset, brain imaging abnormalities, i.e. polymicrogyria, focal cortical dysplasia or normal imaging, and EEG findings, e.g. focal, multi-focal or generalized spikes, focal or generalized slowing. Whole exome analysis comparing a seizure-free group (n = 37) to those with epilepsy (n = 24) to search for gene modifiers for epilepsy did not identify a unique genetic modifier that explained the variability in seizure penetrance in this cohort. Nprl3 knockout in vitro caused mTOR pathway hyperactivation, cell soma enlargement and the formation of cellular aggregates seen in time-lapse videos that were prevented with the mTOR inhibitors rapamycin or torin1. In Nprl3 knockout cells, mTOR remained localized on the lysosome in a constitutively active conformation, as evidenced by phosphorylation of ribosomal S6 and 4E-BP1 proteins, even under nutrient starvation (amino acid-free) conditions, demonstrating that Nprl3 loss decouples mTOR activation from neuronal metabolic state. To model human malformations of cortical development associated with NPRL3 variants, we created a focal Nprl3 knockout in foetal mouse cortex by in utero electroporation and found altered cortical lamination and white matter heterotopic neurons, effects which were prevented with rapamycin treatment. EEG recordings showed network hyperexcitability and reduced seizure threshold to pentylenetetrazol treatment. NPRL3 variants are linked to a highly variable clinical phenotype which we propose results from mTOR-dependent effects on cell structure, cortical development and network organization.


Asunto(s)
Epilepsia , Malformaciones del Desarrollo Cortical , Animales , Humanos , Ratones , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Malformaciones del Desarrollo Cortical/genética , Proteínas Activadoras de GTPasa/genética , Epilepsia/genética , Neuronas/metabolismo , Convulsiones/genética , Sirolimus
2.
Neurobiol Dis ; 114: 184-193, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29481864

RESUMEN

Mutations in DEPDC5 and NPRL3 subunits of GATOR1, a modulator of mechanistic target of rapamycin (mTOR), are linked to malformations of cortical development (MCD). Brain specimens from these individuals reveal abnormal cortical lamination, altered cell morphology, and hyperphosphorylation of ribosomal S6 protein (PS6), a marker for mTOR activation. While numerous studies have examined GATOR1 subunit function in non-neuronal cell lines, few have directly assessed loss of GATOR1 subunit function in neuronal cell types. We hypothesized that DEPDC5 or NPRL3 shRNA-mediated knockdown (DEPDC5/NPRL3 KD) leads to inappropriate functional activation of mTOR and mTOR-dependent alterations in neuronal morphology. Neuronal size was determined in human specimens harboring DEPDC5 or NPRL3 mutations resected for epilepsy treatment. DEPDC5/NPRL3 KD effects on cell size, filopodial extension, subcellular mTOR complex 1 (mTORC1) localization, and mTORC1 activation during nutrient deprivation were assayed in mouse neuroblastoma cells (N2aC) and mouse subventricular zone derived neural progenitor cells (mNPCs). mTORC1-dependent effects of DEPDC5/NPRL3 KD were determined using the mTOR inhibitor rapamycin. Changes in mTOR subcellular localization and mTORC1 pathway activation following DEPDC5/NPRL3 KD were determined by examining the proximity of mTOR to the lysosomal surface during amino acid starvation. Neurons exhibiting PS6 immunoreactivity (Ser 235/236) in human specimens were 1.5× larger than neurons in post-mortem control samples. DEPDC5/NPRL3 KD caused mTORC1, but not mTORC2, hyperactivation, soma enlargement, and increased filopodia in N2aC and mNPCs compared with wildtype cells. DEPDC5/NPRL3 KD led to inappropriate mTOR localization at the lysosome along with constitutive mTOR activation following amino acid deprivation. DEPDC5/NPRL3 KD effects on morphology and functional mTOR activation were reversed by rapamycin. mTOR-dependent effects of DEPDC5/NPRL3 KD on morphology and subcellular localization of mTOR in neurons suggests that loss-of-function in GATOR1 subunits may play a role in MCD formation during fetal brain development.


Asunto(s)
Tamaño de la Célula , Proteínas Activadoras de GTPasa/metabolismo , Células-Madre Neurales/fisiología , Seudópodos/metabolismo , Proteínas Represoras/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular Tumoral , Proteínas Activadoras de GTPasa/genética , Células HEK293 , Humanos , Ratones , Células-Madre Neurales/química , Neuronas/química , Neuronas/fisiología , Seudópodos/genética , Proteínas Represoras/genética , Serina-Treonina Quinasas TOR/genética
3.
Clin Chem ; 62(12): 1579-1592, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27899456

RESUMEN

BACKGROUND: There is increasing interest in markers of recent cannabis use because following frequent cannabis intake, Δ9-tetrahydrocannabinol (THC) may be detected in blood for up to 30 days. The minor cannabinoids cannabidiol, cannabinol (CBN), and THC-glucuronide were previously detected for ≤2.1 h in frequent and occasional smokers' blood after cannabis smoking. Cannabigerol (CBG), Δ9-tetrahydrocannabivarin (THCV), and 11-nor-9-carboxy-THCV might also be recent use markers, but their blood pharmacokinetics have not been investigated. Additionally, while smoking is the most common administration route, vaporization and edibles are frequently used. METHODS: We characterized blood pharmacokinetics of THC, its phase I and phase II glucuronide metabolites, and minor cannabinoids in occasional and frequent cannabis smokers for 54 (occasional) and 72 (frequent) hours after controlled smoked, vaporized, and oral cannabis administration. RESULTS: Few differences were observed between smoked and vaporized blood cannabinoid pharmacokinetics, while significantly greater 11-nor-9-carboxy-THC (THCCOOH) and THCCOOH-glucuronide concentrations occurred following oral cannabis. CBG and CBN were frequently identified after inhalation routes with short detection windows, but not detected following oral dosing. Implementation of a combined THC ≥5 µg/L plus THCCOOH/11-hydroxy-THC ratio <20 cutoff produced detection windows <8 h after all routes for frequent smokers; no occasional smoker was positive 1.5 h or 12 h following inhaled or oral cannabis, respectively. CONCLUSIONS: Vaporization and smoking provide comparable cannabinoid delivery. CBG and CBN are recent-use cannabis markers after cannabis inhalation, but their absence does not exclude recent use. Multiple, complimentary criteria should be implemented in conjunction with impairment observations to improve interpretation of cannabinoid tests. Clinicaltrials.gov Identifier: NCT02177513.


Asunto(s)
Cannabinoides/administración & dosificación , Cannabinoides/farmacocinética , Fumar Marihuana/sangre , Administración Oral , Adulto , Cannabinoides/sangre , Estudios Cruzados , Método Doble Ciego , Femenino , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Volatilización , Adulto Joven
4.
Anal Bioanal Chem ; 408(23): 6461-71, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27422645

RESUMEN

A comprehensive cannabinoid urine quantification method may improve clinical and forensic result interpretation and is necessary to support our clinical research. A liquid chromatography tandem mass spectrometry quantification method for ∆(9)-tetrahydrocannabinol (THC), 11-hydroxy-THC (11-OH-THC), 11-nor-9-carboxy-THC (THCCOOH), ∆(9)-tetrahydrocannabinolic acid (THCAA), cannabinol (CBN), cannabidiol (CBD), cannabigerol (CBG), ∆(9)-tetrahydrocannabivarin (THCV), 11-nor-9-carboxy-THCV (THCVCOOH), THC-glucuronide (THC-gluc), and THCCOOH-glucuronide (THCCOOH-gluc) in urine was developed and validated according to the Scientific Working Group on Toxicology guidelines. Sample preparation consisted of disposable pipette extraction (WAX-S) of 200 µL urine. Separation was achieved on a Kinetex C18 column using gradient elution with flow rate 0.5 mL/min, mobile phase A (10 mM ammonium acetate in water), and mobile phase B (15 % methanol in acetonitrile). Total run time was 14 min. Analytes were monitored in both positive and negative ionization modes by scheduled multiple reaction monitoring. Linear ranges were 0.5-100 µg/L for THC and THCCOOH; 0.5-50 µg/L for 11-OH-THC, CBD, CBN, THCAA, and THC-gluc; 1-100 µg/L for CBG, THCV, and THCVCOOH; and 5-500 µg/L for THCCOOH-gluc (R (2) > 0.99). Analytical biases were 88.3-113.7 %, imprecisions 3.3-14.3 %, extraction efficiencies 42.4-81.5 %, and matrix effect -10 to 32.5 %. We developed and validated a comprehensive, simple, and rapid LC-MS/MS cannabinoid urine method for quantification of 11 cannabinoids and metabolites. This method is being used in a controlled cannabis administration study, investigating urine cannabinoid markers documenting recent cannabis use, chronic frequent smoking, or route of drug administration and potentially improving urine cannabinoid result interpretation.


Asunto(s)
Cannabinoides/orina , Cromatografía Liquida/métodos , Fumar Marihuana/orina , Espectrometría de Masas en Tándem/métodos , Cannabinoides/metabolismo , Humanos , Límite de Detección , Fumar Marihuana/metabolismo , Manejo de Especímenes
5.
Ther Drug Monit ; 37(6): 805-11, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25992796

RESUMEN

Mescaline, the primary psychoactive chemical in peyote cactus, has been consumed for thousands of years in ancient religious ceremonies. The US military wanted to determine if mescaline intake was a problem for personnel readiness. Twenty thousand seventeen urine specimens negative for cannabinoids, cocaine, opiates, and amphetamines were tested for mescaline with the Randox Drugs of Abuse V (DOA-V) biochip array immunoassay at the manufacturer's recommended cutoff of 6 mcg/L. A sensitive and specific method for mescaline quantification in urine was developed and fully validated. Extracted analytes were derivatized with pentafluoropropionic anhydride and pentafluoropropanol and quantified by gas chromatography-mass spectrometry (GC/MS) with electron impact ionization. Standard curves, using linear least squares regression with 1/x weighting, were linear from 1 to 250 mcg/L with coefficients of determination >0.994. Intra- and inter-assay imprecision was <4.4 coefficient of variation (%CV), with accuracies >90.4%. Mean extraction efficiencies were >92.0% across the linear range. This fully validated method was applied for the confirmation of urinary mescaline in 526 presumptive-positive specimens and 198 randomly selected presumptive-negative specimens at the manufacturer's 6 mcg/L cutoff. No specimen confirmed positive at the GC/MS limit of quantification of 1 mcg/L. Results indicated that during this time frame, there was insufficient mescaline drug use in the military to warrant routine screening in the drug testing program. However, mescaline stability, although assessed, could have contributed to lower prevalence. We also present a validated GC/MS method for mescaline quantification in urine for reliable confirmation of suspected mescaline intake.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Mescalina/orina , Detección de Abuso de Sustancias/métodos , Trastornos Relacionados con Sustancias/diagnóstico , Humanos , Inmunoensayo/métodos , Límite de Detección , Sensibilidad y Especificidad
6.
Ther Drug Monit ; 37(5): 661-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25706046

RESUMEN

BACKGROUND: Synthetic cannabinoids are touted as legal alternatives to cannabis, at least when first released, and routine urine cannabinoid screening methods do not detect these novel psychoactive substances. Synthetic cannabinoids are widely available, are a major public health and safety problem, and a difficult challenge for drug-testing laboratories. We evaluated performance of the National Medical Services (NMS) JWH-018 direct enzyme-linked immunosorbent assay (ELISA) kit to sensitively, selectively, and rapidly screen urinary synthetic cannabinoids. METHODS: The NMS ELISA kit targeting the JWH-018 N-(5-hydroxypentyl) metabolite was used to screen 2492 urine samples with 5 and 10 mcg/L cutoffs. A fully validated liquid chromatography-tandem mass spectrometry method for 29 synthetic cannabinoids markers confirmed all presumptive positive and negative results. Performance challenges at ±25% and ±50% of cutoffs determined intraplate and interplate imprecision around proposed cutoffs. RESULTS: The immunoassay was linear from 1 to 500 mcg/L with intraplate and interplate imprecision of ≤8.2% and <14.0%, respectively. No interferences were present from 93 common drugs of abuse, metabolites, coadministered drugs, over-the-counter medications, or structurally similar compounds, and 19 of 73 individual synthetic cannabinoids (26%) exhibited moderate to high cross-reactivity to JWH-018 N-(5-hydroxypentyl) metabolite. Sensitivity, specificity, and efficiency results were 83.7%, 99.4%, and 97.6%, as well as 71.6%, 99.7%, and 96.4% with the 5 and 10 mcg/L urine cutoffs, respectively. CONCLUSIONS: This high throughput immunoassay exhibited good diagnostic efficiency and documented that the NMS JWH-018 direct ELISA is a viable method for screening synthetic cannabinoids in urine targeting the JWH-018 N-(5-hydroxypentyl) and related analytes. Optimal performance was achieved with a matrix-matched 5 mcg/L urine cutoff.


Asunto(s)
Cannabinoides/orina , Ensayo de Inmunoadsorción Enzimática/métodos , Cannabinoides/inmunología , Reacciones Cruzadas , Humanos , Juego de Reactivos para Diagnóstico
7.
Anal Bioanal Chem ; 407(16): 4639-48, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25903022

RESUMEN

Designer piperazines are emerging novel psychoactive substances (NPS) with few high-throughput screening methods for their identification. We evaluated a biochip array technology (BAT) immunoassay for phenylpiperazines (PNP) and benzylpiperazines (BZP) and analyzed 20,017 randomly collected urine workplace specimens. Immunoassay performance at recommended cutoffs was evaluated for PNPI (5 µg/L), PNPII (7.5 µg/L), and BZP (5 µg/L) antibodies. Eight hundred forty positive and 206 randomly selected presumptive negative specimens were confirmed by liquid chromatography high-resolution mass spectrometry (LC-HRMS). Assay limits of detection for PNPI, PNPII, and BZP were 2.9, 6.3, and 2.1 µg/L, respectively. Calibration curves were linear (R (2) > 0.99) with upper limits of 42 µg/L for PNPI/PNII and 100 µg/L for BZP. Quality control samples demonstrated imprecision <19.3 %CV and accuracies 86.0-94.5 % of target. There were no interferences from 106 non-piperazine substances. Seventy-eight of 840 presumptive positive specimens (9.3 %) were LC-HRMS positive, with 72 positive for 1-(3-chlorophenyl)piperazine (mCPP), a designer piperazine and antidepressant trazodone metabolite. Of 206 presumptive negative specimens, one confirmed positive for mCPP (3.3 µg/L) and one for BZP (3.6 µg/L). BAT specificity (21.1 to 91.4 %) and efficiency (27.0 to 91.6 %) increased, and sensitivity slightly decreased (97.5 to 93.8 %) with optimized cutoffs of 25 µg/L PNPI, 42 µg/L PNPI, and 100 µg/L BZP. A high-throughput screening method is needed to identify piperazine NPS. We evaluated performance of the Randox BAT immunoassay to identify urinary piperazines and documented improved performance when antibody cutoffs were raised. In addition, in randomized workplace urine specimens, all but two positive specimens contained mCPP and/or trazodone, most likely from legitimate medical prescriptions. Graphical Abstract Biochip array technology (BAT) immunoassay for designer piperazines detection in urine. In chemiluminescent immunoassay, the labeled-drug (antigen) competes with the drug in the urine. In the absence of drug, the labeled-drug binds to the antibody releasing an enzyme (horseradish peroxidase) to react with the substrate and producing chemiluminescence. The higher the drug concentration in urine, the weaker the chemiluminescent signal is produced. All presumptive positive specimens and randomly selected presumptive negative specimens were analyzed and confirmed by a liquid chromatography high-resolution mass spectrometry with limit of quantification of 2.5 or 5 µg/L.


Asunto(s)
Inmunoensayo/métodos , Piperazinas/orina , Detección de Abuso de Sustancias/métodos , Urinálisis , Lugar de Trabajo , Humanos
8.
Ther Drug Monit ; 36(2): 225-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24622724

RESUMEN

A sensitive and specific method for the quantification of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) in oral fluid collected with the Quantisal and Oral-Eze devices was developed and fully validated. Extracted analytes were derivatized with hexafluoroisopropanol and trifluoroacetic anhydride and quantified by gas chromatography-tandem mass spectrometry with negative chemical ionization. Standard curves, using linear least-squares regression with 1/x weighting were linear from 10 to 1000 ng/L with coefficients of determination >0.998 for both collection devices. Bias was 89.2%-112.6%, total imprecision 4.0%-5.1% coefficient of variation, and extraction efficiency >79.8% across the linear range for Quantisal-collected specimens. Bias was 84.6%-109.3%, total imprecision 3.6%-7.3% coefficient of variation, and extraction efficiency >92.6% for specimens collected with the Oral-Eze device at all 3 quality control concentrations (10, 120, and 750 ng/L). This effective high-throughput method reduces analysis time by 9 minutes per sample compared with our current 2-dimensional gas chromatography-mass spectrometry method and extends the capability of quantifying this important oral fluid analyte to gas chromatography-tandem mass spectrometry. This method was applied to the analysis of oral fluid specimens collected from individuals participating in controlled cannabis studies and will be effective for distinguishing passive environmental contamination from active cannabis smoking.


Asunto(s)
Dronabinol/análogos & derivados , Cromatografía de Gases y Espectrometría de Masas/métodos , Saliva/química , Detección de Abuso de Sustancias/métodos , Espectrometría de Masas en Tándem/métodos , Cannabidiol , Dronabinol/análisis , Combinación de Medicamentos , Humanos , Extractos Vegetales/farmacocinética , Sensibilidad y Especificidad
9.
Ther Drug Monit ; 36(2): 218-24, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24067260

RESUMEN

BACKGROUND: Recently, high-dose oral synthetic delta-9-tetrahydrocannabinol (THC) was shown to alleviate cannabis withdrawal symptoms. The present data describe cannabinoid pharmacokinetics in chronic, daily cannabis smokers who received high-dose oral THC pharmacotherapy and later a smoked cannabis challenge. METHODS: Eleven daily cannabis smokers received 0, 30, 60, or 120 mg/d THC for four 5-day medication sessions, each separated by 9 days of ad libitum cannabis smoking. On the fifth day, participants were challenged with smoking one 5.9% THC cigarette. Plasma collected on the first and fifth days was quantified by two-dimensional gas chromatography mass spectrometer for THC, 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH). Linear ranges (ng/mL) were 0.5-100 for THC, 1-50 for 11-OH-THC, and 0.5-200 for THCCOOH. RESULTS: During placebo dosing, THC, 11-OH-THC, and THCCOOH concentrations consistently decreased, whereas all cannabinoids increased dose dependently during active dronabinol administration. THC increase over time was not significant after any dose, 11-OH-THC increased significantly during the 60- and 120-mg/d doses, and THCCOOH increased significantly only during the 120-mg/d dose. THC, 11-OH-THC, and THCCOOH concentrations peaked within 0.25 hours after cannabis smoking, except after 120 mg/d THC when THCCOOH peaked 0.5 hours before smoking. CONCLUSIONS: The significant withdrawal effects noted during placebo dronabinol administration were supported by significant plasma THC and 11-OH-THC concentration decreases. During active dronabinol dosing, significant dose-dependent increases in THC and 11-OH-THC concentrations support withdrawal symptom suppression. THC concentrations after cannabis smoking were only distinguishable from oral THC doses for 1 hour, too short a period to feasibly identify cannabis relapse. THCCOOH/THC ratios were higher 14 hours after overnight oral dronabinol abstinence but cannot distinguish oral THC dosing from the smoked cannabis intake.


Asunto(s)
Cannabinoides/sangre , Cannabinoides/uso terapéutico , Dronabinol/sangre , Dronabinol/uso terapéutico , Abuso de Marihuana/sangre , Abuso de Marihuana/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Adolescente , Adulto , Cannabinoides/farmacocinética , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Dronabinol/farmacocinética , Femenino , Humanos , Masculino , Fumar Marihuana/sangre , Fumar Marihuana/tratamiento farmacológico , Persona de Mediana Edad , Síndrome de Abstinencia a Sustancias/sangre , Adulto Joven
10.
Anal Bioanal Chem ; 406(17): 4117-28, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24828976

RESUMEN

Oral fluid (OF) enables non-invasive sample collection for on-site drug testing, but performance of on-site tests with occasional and frequent smokers' OF to identify cannabinoid intake requires further evaluation. Furthermore, as far as we are aware, no studies have evaluated differences between cannabinoid disposition among OF collection devices with authentic OF samples after controlled cannabis administration. Fourteen frequent (≥4 times per week) and 10 occasional (less than twice a week) adult cannabis smokers smoked one 6.8% ∆(9)-tetrahydrocannabinol (THC) cigarette ad libitum over 10 min. OF was collected with the StatSure Saliva Sampler, Oral-Eze, and Draeger DrugTest 5000 test cassette before and up to 30 h after cannabis smoking. Test cassettes were analyzed within 15 min and gas chromatography-mass spectrometry cannabinoid results were obtained within 24 h. Cannabinoid concentrations with the StatSure and Oral-Eze devices were compared and times of last cannabinoid detection (t(last)) and DrugTest 5000 test performance were assessed for different cannabinoid cutoffs. 11-nor-9-Carboxy-THC (THCCOOH) and cannabinol concentrations were significantly higher in Oral-Eze samples than in Stat-Sure samples. DrugTest 5000 t(last) for a positive cannabinoid test were median (range) 12 h (4-24 h) and 21 h (1- ≥ 30 h) for occasional and frequent smokers, respectively. Detection windows in screening and confirmatory tests were usually shorter for occasional than for frequent smokers, especially when including THCCOOH ≥20 ng L(-1) in confirmation criteria. No differences in t(last) were observed between collection devices, except for THC ≥2 µg L(-1). We thus report significantly different THCCOOH and cannabinol, but not THC, concentrations between OF collection devices, which may affect OF data interpretation. The DrugTest 5000 on-site device had high diagnostic sensitivity, specificity, and efficiency for cannabinoids.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra/métodos , Cannabinoides/química , Drogas Ilícitas/química , Saliva/química , Adulto , Métodos Analíticos de la Preparación de la Muestra/instrumentación , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Inmunoensayo/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
11.
Anal Bioanal Chem ; 406(2): 587-99, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24232751

RESUMEN

3,4-Methylenedioxymethamphetamine (MDMA) is an illicit phenethylamine ingested for entactogenic and euphoric effects. Although blood is more commonly submitted for forensic analysis, previous human MDMA pharmacokinetics research focused on plasma data; no direct blood-plasma comparisons were drawn. Blood and plasma specimens from 50 healthy adult volunteers (33 males, 17 females, 36 African-American) who ingested recreational 1.0 and 1.6 mg/kg MDMA doses were quantified for MDMA and metabolites 4-hydroxy-3-methoxymethamphetamine (HMMA), 3,4-methylenedioxyamphetamine (MDA), and 4-hydroxy-3-methoxyamphetamine (HMA) by two-dimensional gas chromatography-mass spectrometry. Specimens were collected up to 3 h post-dose and evaluated for maximum concentration (C max), first detection time (t first), time of C max (t max), and 3-h area under the curve (AUC0-3 h); as well as blood metabolite ratios and blood/plasma ratios. Median blood MDMA and MDA C max were significantly greater (p < 0.0005) than in plasma, but HMMA was significantly less (p < 0.0005). HMA was detected in few blood specimens, at low concentrations. Nonlinear pharmacokinetics were not observed for MDMA or MDA in this absorptive phase, but HMMA C max and AUC0-3 h were similar for both doses despite the 1.6-fold dose difference. Blood MDA/MDMA and MDA/HMMA significantly increased (p < 0.0001) over the 3-h time course, and HMMA/MDMA significantly decreased (p < 0.0001). Blood MDMA C max was significantly greater in females (p = 0.010) after the low dose only. Low-dose HMMA AUC0-3 h was significantly decreased in females' blood and plasma (p = 0.027) and in African-Americans' plasma (p = 0.035). These data provide valuable insight into MDMA blood-plasma relationships for forensic interpretation and evidence of sex- and race-based differential metabolism and risk profiles. Figure Median (interquartile range) blood/plasma 3,4-methylenedioxymethamphetamine (MDMA) (a), 4-hydroxy-3-methoxymethamphetamine (HMMA) (b), and 3,4-methylenedioxyamphetamine (MDA) (c) ratios for 3 h after controlled MDMA administration. Changes over time were significant after the 1.6 mg/kg dose for HMMA and MDA (p = 0.013 and p = 0.021), but not for MDMA. No changes over time were significant after the 1.0 mg/kg dose. Note: y-axes do not begin at 0. *p < 0.05 (low vs. high).

12.
Clin Chem ; 59(12): 1770-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23938457

RESUMEN

BACKGROUND: Oral Δ(9)-tetrahydrocannabinol (THC) is effective for attenuating cannabis withdrawal and may benefit treatment of cannabis use disorders. Oral fluid (OF) cannabinoid testing, increasing in forensic and workplace settings, could be valuable for monitoring during cannabis treatment. METHODS: Eleven cannabis smokers resided on a closed research unit for 51 days and received daily 0, 30, 60, and 120 mg of oral THC in divided doses for 5 days. There was a 5-puff smoked cannabis challenge on the fifth day. Each medication session was separated by 9 days of ad libitum cannabis smoking. OF was collected the evening before and throughout oral THC sessions and analyzed by 2-dimensional GC-MS for THC, cannabidiol (CBD), cannabinol (CBN), 11-hydroxy-THC (11-OH-THC), and 11-nor-9-carboxy-THC (THCCOOH). RESULTS: During all oral THC administrations, THC OF concentrations decreased to ≤ 78.2, 33.2, and 1.4 µg/L by 24, 48, and 72 h, respectively. CBN also decreased over time, with concentrations 10-fold lower than THC, with none detected beyond 69 h. CBD and 11-OH-THC were rarely detected, only within 19 and 1.6 h after smoking, respectively. THCCOOH OF concentrations were dose dependent and increased over time during 120-mg THC dosing. After cannabis smoking, THC, CBN, and THCCOOH concentrations showed a significant dose effect and decreased significantly over time. CONCLUSIONS: Oral THC dosing significantly affected OF THCCOOH but minimally contributed to THC OF concentrations; prior ad libitum smoking was the primary source of THC, CBD, and CBN. Higher cannabinoid concentrations following active oral THC administrations vs placebo suggest a compensatory effect of THC tolerance on smoking topography.


Asunto(s)
Cannabinoides/análisis , Dronabinol/uso terapéutico , Fumar Marihuana , Saliva/química , Administración Oral , Adulto , Estudios Cruzados , Dronabinol/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
Ther Drug Monit ; 35(6): 823-30, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24263642

RESUMEN

OBJECTIVE: Methamphetamine (MAMP) use, distribution, and manufacture remain a serious public health and safety problem in the United States, and children environmentally exposed to MAMP face a myriad of developmental, social, and health risks, including severe abuse and neglect necessitating child protection involvement. It is recommended that drug-endangered children receive medical evaluation and care with documentation of overall physical and mental conditions and have urine drug testing. The primary aim of this study was to determine the best biological matrix to detect MAMP, amphetamine (AMP), methylenedioxymethamphetamine (MDMA), methylenedioxyamphetamine (MDA), and 3,4-methylenedioxyethylamphetamine (MDEA) in environmentally exposed children. METHODS: Ninety-one children, environmentally exposed to household MAMP intake, were medically evaluated at the Child and Adolescent Abuse Resource and Evaluation Diagnostic and Treatment Center at the University of California, Davis Children's Hospital. MAMP, AMP, MDMA, MDA, and MDEA were quantified in urine and oral fluid (OF) by gas chromatography mass spectrometry and in hair by liquid chromatography tandem mass spectrometry. RESULTS: Overall drug detection rates in OF, urine, and hair were 6.9%, 22.1%, and 77.8%, respectively. Seventy children (79%) tested positive for 1 or more drugs in 1 or more matrices. MAMP was the primary analyte detected in all 3 biological matrices. All positive OF (n = 5), and 18 of 19 positive urine specimens also had a positive hair test. CONCLUSIONS: Hair analysis offered a more sensitive tool for identifying MAMP, AMP, and MDMA environmental exposure in children than urine or OF testing. A negative urine or hair test does not exclude the possibility of drug exposure, but hair testing provided the greatest sensitivity for identifying drug-exposed children.


Asunto(s)
Trastornos Relacionados con Anfetaminas/epidemiología , Anfetaminas/análisis , Metanfetamina/análisis , Detección de Abuso de Sustancias/métodos , Adolescente , Niño , Preescolar , Cromatografía Liquida/métodos , Exposición a Riesgos Ambientales/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Cabello/química , Humanos , Lactante , Recién Nacido , Sensibilidad y Especificidad
14.
Anal Bioanal Chem ; 405(14): 4679-89, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23494274

RESUMEN

A sensitive and specific analytical method for cannabidiol (CBD) in urine was needed to define urinary CBD pharmacokinetics after controlled CBD administration, and to confirm compliance with CBD medications including Sativex-a cannabis plant extract containing 1:1 ∆(9)-tetrahydrocannabinol (THC) and CBD. Non-psychoactive CBD has a wide range of therapeutic applications and may also influence psychotropic smoked cannabis effects. Few methods exist for the quantification of CBD excretion in urine, and no data are available for phase II metabolism of CBD to CBD-glucuronide or CBD-sulfate. We optimized the hydrolysis of CBD-glucuronide and/or -sulfate, and developed and validated a GC-MS method for urinary CBD quantification. Solid-phase extraction isolated and concentrated analytes prior to GC-MS. Method validation included overnight hydrolysis (16 h) at 37 °C with 2,500 units ß-glucuronidase from Red Abalone. Calibration curves were fit by linear least squares regression with 1/x (2) weighting with linear ranges (r(2) > 0.990) of 2.5-100 ng/mL for non-hydrolyzed CBD and 2.5-500 ng/mL for enzyme-hydrolyzed CBD. Bias was 88.7-105.3 %, imprecision 1.4-6.4 % CV and extraction efficiency 82.5-92.7 % (no hydrolysis) and 34.3-47.0 % (enzyme hydrolysis). Enzyme-hydrolyzed urine specimens exhibited more than a 250-fold CBD concentration increase compared to alkaline and non-hydrolyzed specimens. This method can be applied for urinary CBD quantification and further pharmacokinetics characterization following controlled CBD administration.


Asunto(s)
Álcalis/orina , Cannabidiol/orina , Cromatografía de Gases y Espectrometría de Masas/métodos , Glucuronidasa/orina , Álcalis/química , Cannabidiol/química , Glucuronidasa/química , Humanos , Hidrólisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Anal Bioanal Chem ; 405(26): 8451-61, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23954944

RESUMEN

Oral fluid (OF) is an alternative biological matrix for monitoring cannabis intake in drug testing, and drugged driving (DUID) programs, but OF cannabinoid test interpretation is challenging. Controlled cannabinoid administration studies provide a scientific database for interpreting cannabinoid OF tests. We compared differences in OF cannabinoid concentrations from 19 h before to 30 h after smoking a 6.8% THC cigarette in chronic frequent and occasional cannabis smokers. OF was collected with the Statsure Saliva Sampler™ OF device. 2D-GC-MS was used to quantify cannabinoids in 357 OF specimens; 65 had inadequate OF volume within 3 h after smoking. All OF specimens were THC-positive for up to 13.5 h after smoking, without significant differences between frequent and occasional smokers over 30 h. Cannabidiol (CBD) and cannabinol (CBN) had short median last detection times (2.5-4 h for CBD and 6-8 h for CBN) in both groups. THCCOOH was detected in 25 and 212 occasional and frequent smokers' OF samples, respectively. THCCOOH provided longer detection windows than THC in all frequent smokers. As THCCOOH is not present in cannabis smoke, its presence in OF minimizes the potential for false positive results from passive environmental smoke exposure, and can identify oral THC ingestion, while OF THC cannot. THC ≥ 1 µg/L, in addition to CBD ≥ 1 µg/L or CBN ≥ 1 µg/L suggested recent cannabis intake (≤13.5 h), important for DUID cases, whereas THC ≥ 1 µg/L or THC ≥ 2 µg/L cutoffs had longer detection windows (≥30 h), important for workplace testing. THCCOOH windows of detection for chronic, frequent cannabis smokers extended beyond 30 h, while they were shorter (0-24 h) for occasional cannabis smokers.


Asunto(s)
Cannabinoides/análisis , Fumar Marihuana/metabolismo , Saliva/química , Adolescente , Adulto , Cannabinoides/metabolismo , Cannabis/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Saliva/metabolismo , Detección de Abuso de Sustancias/métodos , Adulto Joven
16.
Anal Bioanal Chem ; 405(23): 7269-79, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23831756

RESUMEN

Oral fluid (OF) is a valuable biological alternative for clinical and forensic drug testing. Evaluating OF to plasma (OF/P) cannabinoid ratios provides important pharmacokinetic data on the disposition of drug and factors influencing partition between matrices. Eleven chronic cannabis smokers resided on a closed research unit for 51 days. There were four 5-day sessions of 0, 30, 60, and 120 mg oral ∆(9)-tetrahydrocannabinol (THC)/day followed by a five-puff smoked cannabis challenge on Day 5. Each session was separated by 9 days ad libitum cannabis smoking. OF and plasma specimens were analyzed for THC and metabolites. During ad libitum smoking, OF/P THC ratios were high (median, 6.1; range, 0.2-348.5) within 1 h after last smoking, decreasing to 0.1-20.7 (median, 2.1) by 13.0-17.1 h. OF/P THC ratios also decreased during 5-days oral THC dosing, and after the smoked cannabis challenge, median OF/P THC ratios decreased from 1.4 to 5.5 (0.04-245.6) at 0.25 h to 0.12 to 0.17 (0.04-5.1) at 10.5 h post-smoking. In other studies, longer exposure to more potent cannabis smoke and oromucosal cannabis spray was associated with increased OF/P THC peak ratios. Median OF/P 11-nor-9-carboxy-THC (THCCOOH) ratios were 0.3-2.5 (range, 0.1-14.7) ng/µg, much more consistent in various dosing conditions over time. OF/P THC, but not THCCOOH, ratios were significantly influenced by oral cavity contamination after smoking or oromucosal spray of cannabinoid products, followed by time-dependent decreases. Establishing relationships between OF and plasma cannabinoid concentrations is essential for making inferences of impairment or other clinical outcomes from OF concentrations.


Asunto(s)
Cannabinoides/sangre , Dronabinol/sangre , Alucinógenos/sangre , Fumar Marihuana , Saliva/química , Adulto , Calibración , Cannabinoides/farmacocinética , Dronabinol/farmacocinética , Cromatografía de Gases y Espectrometría de Masas , Alucinógenos/farmacocinética , Humanos , Límite de Detección
17.
Anal Bioanal Chem ; 405(12): 4067-76, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23471370

RESUMEN

Oral fluid (OF) offers a noninvasive sample collection for drug testing. However, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) in OF has not been adequately characterized in comparison to plasma. We administered oral low-dose (1.0 mg/kg) and high-dose (1.6 mg/kg) MDMA to 26 participants and collected simultaneous OF and plasma specimens for up to 143 h after dosing. We compared OF/plasma (OF/P) ratios, time of initial detection (t first), maximal concentrations (C max), time of peak concentrations (t max), time of last detection (t last), clearance, and 3,4-methylenedioxyamphetamine (MDA)-to-MDMA ratios over time. For OF MDMA and MDA, C max was higher, t last was later, and clearance was slower compared to plasma. For OF MDA only, t first was later compared to plasma. Median (range) OF/P ratios were 5.6 (0.1-52.3) for MDMA and 3.7 (0.7-24.3) for MDA. OF and plasma concentrations were weakly but significantly correlated (MDMA: R(2) = 0.438, MDA: R(2) = 0.197, p < 0.0001). Median OF/P ratios were significantly higher following high dose administration: MDMA low = 5.2 (0.1-40.4), high = 6.0 (0.4-52.3, p < 0.05); MDA low = 3.3 (0.7-17.1), high = 4.1 (0.9-24.3, p < 0.001). There was a large inter-subject variation in OF/P ratios. The MDA/MDMA ratios in plasma were higher than those in OF (p < 0.001), and the MDA/MDMA ratios significantly increased over time in OF and plasma. The MDMA and MDA concentrations were higher in OF than in plasma. OF and plasma concentrations were correlated, but large inter-subject variability precludes the estimation of plasma concentrations from OF.


Asunto(s)
N-Metil-3,4-metilenodioxianfetamina/metabolismo , N-Metil-3,4-metilenodioxianfetamina/farmacocinética , Saliva/metabolismo , Administración Oral , Adolescente , Adulto , Femenino , Humanos , Masculino , N-Metil-3,4-metilenodioxianfetamina/administración & dosificación , N-Metil-3,4-metilenodioxianfetamina/sangre , Detección de Abuso de Sustancias , Adulto Joven
18.
Clin Chem ; 58(4): 748-56, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22273566

RESUMEN

BACKGROUND: We measured Δ(9)-tetrahydrocannabinol (THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), and cannabinol (CBN) disposition in oral fluid (OF) following controlled cannabis smoking to evaluate whether monitoring multiple cannabinoids in OF improved OF test interpretation. METHODS: Cannabis smokers provided written informed consent for this institutional review board-approved study. OF was collected with the Quantisal™ device following ad libitum smoking of one 6.8% THC cigarette. Cannabinoids were quantified by 2-dimensional GC-MS. We evaluated 8 alternative cutoffs based on different drug testing program needs. RESULTS: 10 participants provided 86 OF samples -0.5 h before and 0.25, 0.5, 1, 2, 3, 4, 6, and 22 h after initiation of smoking. Before smoking, OF samples of 4 and 9 participants were positive for THC and THCCOOH, respectively, but none were positive for CBD and CBN. Maximum THC, CBD, and CBN concentrations occurred within 0.5 h, with medians of 644, 30.4, and 49.0 µg/L, respectively. All samples were THC positive at 6 h (2.1-44.4 µg/L), and 4 of 6 were positive at 22 h. CBD and CBN were positive only up to 6 h in 3 (0.6-2.1 µg/L) and 4 (1.0-4.4 µg/L) participants, respectively. The median maximum THCCOOH OF concentration was 115 ng/L, with all samples positive to 6 h (14.8-263 ng/L) and 5 of 6 positive at 22 h. CONCLUSIONS: By quantifying multiple cannabinoids and evaluating different analytical cutoffs after controlled cannabis smoking, we determined windows of drug detection, found suggested markers of recent smoking, and minimized the potential for passive contamination.


Asunto(s)
Cannabinoides/análisis , Fumar Marihuana/metabolismo , Saliva/química , Detección de Abuso de Sustancias/métodos , Adolescente , Adulto , Biomarcadores/análisis , Cannabidiol/análisis , Cannabinoides/farmacocinética , Cannabinol/análisis , Dronabinol/análogos & derivados , Dronabinol/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Saliva/metabolismo , Adulto Joven
19.
Clin Chem ; 58(7): 1101-9, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22532594

RESUMEN

BACKGROUND: Defining cannabinoid stability in authentic oral fluid (OF) is critically important for result interpretation. There are few published OF stability data, and of those available, all employed fortified synthetic OF solutions or elution buffers; none included authentic OF following controlled cannabis smoking. METHODS: An expectorated OF pool and a pool of OF collected with Quantisal™ devices were prepared for each of 10 participants. Δ9-tetrahydrocannabinol (THC), 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), and cannabinol (CBN) stability in each of 10 authentic expectorated and Quantisal-collected OF pools were determined after storage at 4 °C for 1 and 4 weeks and at -20 °C for 4 and 24 weeks. Results within ±20% of baseline concentrations analyzed within 24 h of collection were considered stable. RESULTS: All Quantisal OF cannabinoid concentrations were stable for 1 week at 4 °C. After 4 weeks at 4 °C, as well as 4 and 24 weeks at -20 °C, THC was stable in 90%, 80%, and 80% and THCCOOH in 89%, 40%, and 50% of Quantisal samples, respectively. Cannabinoids in expectorated OF were less stable than in Quantisal samples when refrigerated or frozen. After 4 weeks at 4 and -20 °C, CBD and CBN were stable in 33%-100% of Quantisal and expectorated samples; by 24 weeks at -20 °C, CBD and CBN were stable in ≤ 44%. CONCLUSIONS: Cannabinoid OF stability varied by analyte, collection method, and storage duration and temperature, and across participants. OF collection with a device containing an elution/stabilization buffer, sample storage at 4 °C, and analysis within 4 weeks is preferred to maximize result accuracy.


Asunto(s)
Cannabinoides/análisis , Fumar Marihuana/metabolismo , Saliva/química , Manejo de Especímenes/métodos , Detección de Abuso de Sustancias , Adolescente , Adulto , Frío , Estabilidad de Medicamentos , Humanos , Persona de Mediana Edad , Manejo de Especímenes/instrumentación , Factores de Tiempo , Adulto Joven
20.
Clin Chem ; 58(10): 1418-25, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22912396

RESUMEN

BACKGROUND: Oral fluid (OF) testing offers noninvasive sample collection for on-site drug testing; however, to date, test performance for Δ(9)-tetrahydrocannabinol (THC) detection has had unacceptable diagnostic sensitivity. On-site tests must accurately identify cannabis exposure because this drug accounts for the highest prevalence in workplace drug testing and driving under the influence of drugs (DUID) programs. METHODS: Ten cannabis smokers (9 males, 1 female) provided written informed consent to participate in this institutional review board-approved study and smoked 1 6.8%-THC cigarette ad libitum. OF was collected with the Draeger DrugTest(®) 5000 test cassette and Quantisal™ device 0.5 h before and up to 22 h after smoking. Test cassettes were analyzed within 15 min (n = 66), and Quantisal GC-MS THC results obtained within 24 h. Final THC detection times and test performances were assessed at different cannabinoid cutoffs. RESULTS: Diagnostic sensitivity, diagnostic specificity, and efficiency at DrugTest 5000's 5 µg/L screening cutoff and various THC confirmation cutoffs were 86.2-90.7, 75.0-77.8, and 84.8-87.9%, respectively. Last detection times were >22 h, longer than previously suggested. Confirmation of 11-nor-9-carboxy-THC, absent in THC smoke, minimized the potential for passive OF contamination and still provided 22-h windows of detection, appropriate for workplace drug testing, whereas confirmation of cannabidiol, and/or cannabinol yielded shorter 6-h windows of detection, appropriate for DUID OF testing. CONCLUSIONS: The DrugTest 5000 on-site device provided high diagnostic sensitivity for detection of cannabinoid exposure, and the selection of OF confirmation analytes and cutoffs provided appropriate windows of detection to meet the goals of different drug testing programs.


Asunto(s)
Cannabinoides/análisis , Saliva/química , Detección de Abuso de Sustancias/métodos , Adolescente , Adulto , Cannabidiol/análisis , Cannabinol/análisis , Dronabinol/análogos & derivados , Dronabinol/análisis , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Masculino , Valores de Referencia , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA