Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chemistry ; 29(61): e202301853, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37563909

RESUMEN

The tetrahedral shape-persistent molecule 14+ , containing four identical pyridyl pyridinium units connected via a sp3 hybridized carbon atom, has been investigated in detail by means of steady-state and time resolved spectroscopy. Remarkable photophysical properties are observed, particularly in comparison with protonated and methylated analogues (1H4 8+ , 1Me4 8+ ), which exhibit substantially shorter excited state lifetimes and lower emission quantum yields. Theoretical studies have rationalized the behavior of the tetrameric molecules relative to the monomers, with DFT and TD-DFT calculations corroborating steady-state (absorption and emission) and transient absorption spectra. The behavior of the monomeric compounds (each consisting in one of the four identical subunits of the tetramers, i. e., 2+ , 2H2+ and 2Me2+ ) considerably differs from that of the tetramers, indicating a strong electronic interaction between the subunits in the tetrameric species, likely promoted by the homoconjugation through the connecting sp3  C atom. 2+ is characterized by a peculiar S1 -S2 excited state inversion, whereas the short-lived emitting S1 state of 2H2+ and 2Me2+ exhibits a partial charge-transfer character, as substantiated by spectro-electrochemical studies. Among the six investigated systems, only 14+ is a sizeable luminophore (Φem =0.15), which is related to the peculiar features of its singlet state.

2.
J Am Chem Soc ; 144(23): 10180-10185, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35575701

RESUMEN

We describe a [2]rotaxane whose recognition sites for the ring are a dibenzylammonium moiety, endowed with acidic and H-bonding donor properties, and an imidazolium center bearing a photoactive phenylazo substituent. Light irradiation of this compound triggers a network of E/Z isomerization and proton transfer reactions that enable autonomous and reversible ring shuttling away from equilibrium.


Asunto(s)
Protones , Rotaxanos , Catálisis , Isomerismo
3.
Chem Rev ; 120(1): 200-268, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31415169

RESUMEN

Directed motion at the nanoscale is a central attribute of life, and chemically driven motor proteins are nature's choice to accomplish it. Motivated and inspired by such bionanodevices, in the past few decades chemists have developed artificial prototypes of molecular motors, namely, multicomponent synthetic species that exhibit directionally controlled, stimuli-induced movements of their parts. In this context, photonic and redox stimuli represent highly appealing modes of activation, particularly from a technological viewpoint. Here we describe the evolution of the field of photo- and redox-driven artificial molecular motors, and we provide a comprehensive review of the work published in the past 5 years. After an analysis of the general principles that govern controlled and directed movement at the molecular scale, we describe the fundamental photochemical and redox processes that can enable its realization. The main classes of light- and redox-driven molecular motors are illustrated, with a particular focus on recent designs, and a thorough description of the functions performed by these kinds of devices according to literature reports is presented. Limitations, challenges, and future perspectives of the field are critically discussed.

4.
J Am Chem Soc ; 143(29): 10890-10894, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34282901

RESUMEN

We describe the modular design of a pseudorotaxane-based supramolecular pump and its photochemically driven autonomous nonequilibrium operation in a dissipative regime. These properties derive from careful engineering of the energy maxima and minima along the threading coordinate and their light-triggered modulation. Unlike its precursor, this second-generation system is amenable to functionalization for integration into more complex devices.

5.
J Am Chem Soc ; 143(21): 8046-8055, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33915051

RESUMEN

The mechanical interlocking of molecular components can lead to the appearance of novel and unconventional properties and processes, with potential relevance for applications in nanoscience, sensing, catalysis, and materials science. We describe a [3]rotaxane in which the number of recognition sites available on the axle component can be changed by acid-base inputs, encompassing cases in which this number is larger, equal to, or smaller than the number of interlocked macrocycles. These species exhibit very different properties and give rise to a unique network of acid-base reactions that leads to a fine pKa tuning of chemically equivalent acidic sites. The rotaxane where only one station is available for two rings exhibits a rich coconformational dynamics, unveiled by an integrated experimental and computational approach. In this compound, the two crown ethers compete for the sole recognition site, but can also come together to share it, driven by the need to minimize free energy without evident inter-ring interactions.

6.
Chemistry ; 27(43): 11019-11020, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34180105

RESUMEN

Invited for the cover of this issue is Alberto Credi and co-workers at the University of Bologna and National Research Council, Bologna, Italy. The image represents the photostationary non-equilibrium operation of supramolecular pumps as a hydraulic circuit in which water flows between reservoirs. Read the full text of the article at 10.1002/chem.202101163.


Asunto(s)
Agua , Humanos
7.
Chemistry ; 27(65): 16250-16259, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34431140

RESUMEN

Tetraphenylmethane appended with four pyridylpyridinium units works as a scaffold to self-assemble four ruthenium porphyrins in a tetrahedral shape-persistent giant architecture. The resulting supramolecular structure has been characterised in the solid state by X-ray single crystal analysis and in solution by various techniques. Multinuclear NMR spectroscopy confirms the 1 : 4 stoichiometry with the formation of a highly symmetric structure. The self-assembly process can be monitored by changes of the redox potentials, as well as by modifications in the visible absorption spectrum of the ruthenium porphyrin and by a complete quenching of both the bright fluorescence of the tetracationic scaffold and the weak phosphorescence of the ruthenium porphyrin. An ultrafast photoinduced electron transfer is responsible for this quenching process. The lifetime of the resulting charge separated state (800 ps) is about four times longer in the giant supramolecular structure compared to the model 1 : 1 complex formed by the ruthenium porphyrin and a single pyridylpyridinium unit. Electron delocalization over the tetrameric pyridinium structure is likely to be responsible for this effect.

8.
Chemistry ; 27(43): 11076-11083, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-33951231

RESUMEN

The development of artificial nanoscale motors that can use energy from a source to perform tasks requires systems capable of performing directionally controlled molecular movements and operating away from chemical equilibrium. Here, the design, synthesis and properties of pseudorotaxanes are described, in which a photon input triggers the unidirectional motion of a macrocyclic ring with respect to a non-symmetric molecular axle. The photoinduced energy ratcheting at the basis of the pumping mechanism is validated by measuring the relevant thermodynamic and kinetic parameters. Owing to the photochemical behavior of the azobenzene moiety embedded in the axle, the pump can repeat its operation cycle autonomously under continuous illumination. NMR spectroscopy was used to observe the dissipative non-equilibrium state generated in situ by light irradiation. We also show that fine changes in the axle structure lead to an improvement in the performance of the motor. Such results highlight the modularity and versatility of this minimalist pump design, which provides facile access to dynamic systems that operate under photoinduced non-equilibrium regimes.


Asunto(s)
Rotaxanos , Cinética , Movimiento (Física) , Termodinámica
9.
Angew Chem Int Ed Engl ; 60(1): 313-320, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-32722869

RESUMEN

Multi-functionalization and isomer-purity of fullerenes are crucial tasks for the development of their chemistry in various fields. In both current main approaches-tether-directed covalent functionalization and supramolecular masks-the control of regioselectivity requires multi-step synthetic procedures to prepare the desired tether or mask. Herein, we describe light-responsive tethers, containing an azobenzene photoswitch and two malonate groups, in the double cyclopropanation of [60]fullerene. The formation of the bis-adducts and their spectroscopic and photochemical properties, as well as the effect of azobenzene photoswitching on the regiochemistry of the bis-addition, have been studied. The behavior of the tethers depends on the geometry of the connection between the photoactive core and the malonate moieties. One tether lead to a strikingly different adduct distribution for the E and Z isomers, indicating that the covalent bis-functionalization of C60 can be controlled by light.

10.
Angew Chem Int Ed Engl ; 59(35): 14825-14834, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32396687

RESUMEN

The general principles guiding the design of molecular machines based on interlocked structures are well known. Nonetheless, the identification of suitable molecular components for a precise tuning of the energetic parameters that determine the mechanical link is still challenging. Indeed, what are the reasons of the "all-or-nothing" effect, which turns a molecular "speed-bump" into a stopper in pseudorotaxane-based architectures? Here we investigate the threading and dethreading processes for a representative class of molecular components, based on symmetric dibenzylammonium axles and dibenzo[24]crown-8 ether, with a joint experimental-computational strategy. From the analysis of quantitative data and an atomistic insight, we derive simple rules correlating the kinetic behaviour with the substitution pattern, and provide rational guidelines for the design of modules to be integrated in molecular switches and motors with sophisticated dynamic features.

11.
J Am Chem Soc ; 141(23): 9129-9133, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31129959

RESUMEN

We exploit a reversible acid-base triggered molecular shuttling process to switch an appropriately designed rotaxane between prochiral and mechanically planar chiral forms. The mechanically planar enantiomers and their interconversion, arising from ring shuttling, have been characterized by NMR spectroscopy. We also show that the supramolecular interaction of the positively charged rotaxane with optically active anions causes an imbalance in the population of the two enantiomeric coconformations. This result represents an unprecedented example of chiral molecular recognition and can disclose innovative approaches to enantioselective sensing and catalysis.

12.
Photochem Photobiol Sci ; 18(9): 2281-2286, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30968923

RESUMEN

Shape-persistent azobenzene tetramers functionalized at the periphery with alkyloxy substituents of different lengths have been synthesized and their photochemical behaviour has been investigated. Efficient E→Z photoisomerization of the azobenzene units takes place both in solution and in the solid state, a highly desirable yet uncommon property for azobenzene-type photochromic compounds. The solid state E→Z photoisomerization is accompanied by an isothermal crystal-amorphous phase transformation; successively, anisotropic crystals can be grown upon promoting the Z→E isomerization by thermal annealing of the irradiated samples. These results validate the strategy of engineering multiphotochromic architectures with a rigid star-shaped geometry to preserve the solution-based photoreactivity also in the solid state. The observed unexpected photoinduced alignment makes these materials potentially attractive for the development of photo-patternable and photo-responsive surfaces.

13.
J Am Chem Soc ; 140(39): 12323-12327, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30251843

RESUMEN

The proliferation of light-activated switches in recent years has enabled their use in a broad range of applications encompassing an array of research fields and disciplines. All current systems, however, have limitations (e.g., from complicated synthesis to incompatibility in biologically relevant media and lack of switching in the solid-state) that can stifle their real-life application. Here we report on a system that packs most, if not all, the desired, targeted and sought-after traits from photochromic compounds (bistability, switching in various media ranging from serum to solid-state, while exhibiting ON/OFF fluorescence emission switching, and two-photon assisted near-infrared light toggling) in an easily accessible structure.

14.
Photochem Photobiol Sci ; 17(6): 734-740, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29722402

RESUMEN

Among the plethora of photochromes reported so far, azobenzene has been proven to be the most suitable photoswitch for molecular systems and materials, due to its highly efficient and clean E-Z photoisomerization. Here we report two ammonium-based molecular axles bearing one or two p-cyanoazobenzene units at the extremities, able to form pseudorotaxanes with a crown ether macrocycle. The photochemistry of these compounds was studied in the isolated forms and in the pseudorotaxanes, showing that the functionalization speeds up the threading process without affecting the photochemical properties of the system. These results suggest that the investigated pseudorotaxanes can form the basis of new prototypes of artificial molecular-level pumps.

15.
Eur J Inorg Chem ; 2018(42): 4589-4603, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31007574

RESUMEN

Molecular and supramolecular-based systems and materials that can perform predetermined functions in response to light stimulation have been extensively studied in the past three decades. Their investigation continues to be a highly stimulating topic of chemical research, not only because of the inherent scientific value related to a bottom-up approach to functional nanostructures, but also for the prospective applications in diverse fields of technology and medicine. Light is an important tool in this context, as it can be conveniently used both for supplying energy to the system and for probing its states and transformations. In this microreview we recall some basic aspects of light-induced processes in (supra)molecular assemblies, and discuss their exploitation to implement novel functionalities with nanostructured devices, machines and materials. To this aim we illustrate a few examples from our own recent work, which are meant to illustrate the trends of current research in the field.

16.
Angew Chem Int Ed Engl ; 57(46): 15034-15039, 2018 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-30187995

RESUMEN

Azobenzene is a prototypical molecular switch that can be reversibly photoisomerized between the nearly planar and apolar trans form, and the distorted, polar cis form. Most studies related to azobenzene derivatives have focused on planar adsorbed molecules. We present herein the study of a three-dimensional shape-persistent molecular architecture consisting of four tetrahedrally arranged azobenzene units that is adsorbed on a Ag(111) surface. While the azobenzenes of the tripod in contact with the surface lost their switching ability, different isomers of the upright standing arm of the tetramer were obtained reversibly and efficiently by illumination at different wavelengths, revealing time constants of only a few minutes. Diffusion on the surface was dependent on the isomeric state-trans or cis-of the upright oriented azobenzene group. Hence, molecular mobility can be modulated by its isomeric state, which suggests that molecular growth processes could be controlled by external stimuli.

17.
Chemistry ; 23(26): 6380-6390, 2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28263437

RESUMEN

A shape-persistent molecule, featuring four bipyridinium units, has been synthesized that upon reduction undergoes intermolecular pimerization because of the rigid architecture of the molecule. The pimerization process has been investigated by a variety of techniques, such as absorption measurements, EPR spectroscopy, as well as gamma and pulse radiolysis, and compared with the behavior of a model compound. Computational studies have also been performed to support the experimental data. The most interesting feature of the tetramer is that pimerization occurs only above a threshold concentration of monoreduced species, on the contrary to the model compound. Furthermore, there is an increase of the apparent pimerization constant by increasing the concentration of reduced bipyridinium units. These results have been interpreted by the fact that pimerization is favored in the tetrahedrally shaped molecule because of a cooperative mechanism. Each multiply reduced molecule can indeed undergo multiple intermolecular interactions that enhance the stabilization of the system, also leading to hierarchical supramolecular growth. The resulting supramolecular system formed by such intermolecular pimerization should exhibit a diamond-like structure, as suggested by a simplified modeling approach. The intermolecular nature of the pimerization process occurring in the tetramer has been demonstrated by measuring the corresponding bimolecular rate constant by pulsed radiolysis experiments.

18.
Chemphyschem ; 18(13): 1755-1759, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28135020

RESUMEN

Nonlinear input-output relations are at the basis of the regulation of biochemical processes in living organisms and are important for the development of digital logic circuits based on molecules. In this article we show that a linear change of a chemical input can be translated into an exponential change of a luminescence output in a simple fluorescent acid-base switch based on 8-methoxyquinoline. Such unconventional behavior arises from the fact that part of the light emitted by the switch in its basic form is reabsorbed by the acid form, and is made possible by the particular spectroscopic properties of the two forms. Systems of this kind could act as noise filters in analog-to-digital conversion, and as control elements to increase the functional complexity of artificial molecular devices.


Asunto(s)
Lógica , Luminiscencia , Quinolinas/química , Conversión Analogo-Digital , Concentración de Iones de Hidrógeno , Estructura Molecular
19.
Chem Rec ; 17(7): 700-712, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28054435

RESUMEN

The development of nanoscale systems capable to perform specific functions under external control is a challenging task and a fascinating objective in Chemistry. Photochromic compounds undergo radical changes in their physico-chemical properties upon light excitation, for this reason they are valuable building blocks for the construction of photo-controllable molecular devices, machines and materials. The E-Z photoisomerization of azobenzene has been known for almost 80 years and - owing to its high efficiency and excellent reversibility - has been widely employed to introduce an element of photo-control in a large variety of compounds, biomolecules, nanosystems and materials. Here we present some of our research results highlighting how this outstanding photochrome can be utilized to develop systems with light-induced functionalities.

20.
J Am Chem Soc ; 136(40): 14245-54, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25264943

RESUMEN

While most of the studies on molecular machines have been performed in solution, interfacing these supramolecular systems with solid-state nanostructures and materials is very important in view of their utilization in sensing components working by chemical and photonic actuation. Host polymeric materials, and particularly polymer nanofibers, enable the manipulation of the functional molecules constituting molecular machines and provide a way to induce and control the supramolecular organization. Here, we present electrospun nanocomposites embedding a self-assembling rotaxane-type system that is responsive to both optical (UV-vis light) and chemical (acid/base) stimuli. The system includes a molecular axle comprised of a dibenzylammonium recognition site and two azobenzene end groups and a dibenzo[24]crown-8 molecular ring. The dethreading and rethreading of the molecular components in nanofibers induced by exposure to base and acid vapors, as well as the photoisomerization of the azobenzene end groups, occur in a similar manner to what observed in solution. Importantly, however, the nanoscale mechanical function following external chemical stimuli induces a measurable variation of the macroscopic mechanical properties of nanofibers aligned in arrays, whose Young's modulus is significantly enhanced upon dethreading of the axles from the rings. These composite nanosystems show therefore great potential for application in chemical sensors, photonic actuators, and environmentally responsive materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA