Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Bioorg Med Chem Lett ; 96: 129517, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37838341

RESUMEN

The search for new classes of antibiotics is a real concern of public health due to the emergence of multi-resistant bacteria strains. We report herein the synthesis and characterization of a new series of 13 molecules combining isoxazoline/isoxazole sulfonamides and hydrazides motives. These molecules were obtained according to a costless eco-friendly procedure, and a one-pot three-step cascade synthesis under ultrasonic cavitation. All the synthesized compounds were fully characterized by HRMS, 1H NMR, 13C NMR spectroscopy and HPLC analysis. These new molecules have been evaluated against the major human opportunistic pathogen Pseudomonas aeruginosa to determine their potential to affect its growth and biofilm formation or dispersion. Two derivatives (5a and 6a) demonstrated their ability to destabilize a mature biofilm by about 50 % within 24 h. This may pave the way to the development of a new class of compounds affecting biofilm, which are easy to synthesize according to green chemistry processes.


Asunto(s)
Biopelículas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Sulfanilamida , Sulfonamidas/farmacología
2.
Int J Mol Sci ; 24(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37239913

RESUMEN

A series of 6-polyaminosteroid analogues of squalamine were synthesized with moderate to good yields and evaluated for their in vitro antimicrobial properties against both susceptible and resistant Gram-positive (vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus) and Gram-negative (carbapenem-resistant Acinetobacter baumannii and Pseudomonas aeruginosa) bacterial strains. Minimum inhibitory concentrations against Gram-positive bacteria ranged from 4 to 16 µg/mL for the most effective compounds, 4k and 4n, and showed an additive or synergistic effect with vancomycin or oxacillin. On the other hand, the derivative 4f, which carries a spermine moiety like that of the natural trodusquemine molecule, was found to be the most active derivative against all the resistant Gram-negative bacteria tested, with an MIC value of 16 µg/mL. Our results suggest that 6-polyaminosteroid analogues of squalamine are interesting candidates for Gram-positive bacterial infection treatments, as well as potent adjuvants to fight Gram-negative bacterial resistance.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Vancomicina/farmacología , Antibacterianos/farmacología , Colestanoles , Bacterias Grampositivas , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana
3.
Exp Dermatol ; 31(7): 1056-1064, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35231149

RESUMEN

With a view to reducing the impact of Cutibacterium acnes (C. acnes) on acne vulgaris, it now appears interesting to modify the balance between acneic and non-acneic strains of C. acnes using moderate approach. In the present study, we identified that a G2 dendrigraft of lysine dendrimer (G2 dendrimer) was able to modify membrane fluidity and biofilm formation of a C. acnes acneic strain (RT5), whereas it appeared no or less active on a C. acnes non-acneic strain (RT6). Moreover, skin ex vivo data indicated that the G2 is able to decrease inflammation (IL1α and TLR-2) and improve skin desquamation after of C. acnes acneic strains colonization. Then, in vivo data confirmed, after C. acnes quantification by metagenomic analysis that the G2 cream after 28 days of treatment was able to increase the diversity of C. acnes strains versus placebo cream. The data also showed a modification of the balance expression between C. acnes phylotype IA1 and phylotype II abundances. Taken together, the results confirm the interest of using soft compounds in cosmetic product for modifying phylotype abundances and diversity of C. acnes strains could be a new strategy for prevent acne vulgaris outbreak.


Asunto(s)
Acné Vulgar , Dendrímeros , Acné Vulgar/microbiología , Acné Vulgar/prevención & control , Humanos , Polilisina , Propionibacterium acnes , Piel/microbiología
4.
Adv Exp Med Biol ; 1386: 147-184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36258072

RESUMEN

Bacteria sense their environment via the cell envelope, which in Gram-negative bacteria comprises the outer membrane, the periplasmic space, and the inner membrane. Pseudomonas aeruginosa is an opportunistic pathogen which is exposed to different cell wall stresses imposed by exposure to antibiotics, osmotic pressure, and long-time colonization of host tissues such as the lung in cystic fibrosis patients. In response to these stresses, P. aeruginosa is able to respond by establishing a cell envelope stress response involving different regulatory pathways including the extra-cytoplasmic sigma factors AlgU, SigX, and SbrI and other two-component sensor/response regulators and effectors. This chapter aims to review the different factors leading to the activation of the cell envelope stress response in P. aeruginosa and the genetic determinants involved in this response, which is crucial for the survival of the bacterium upon exposure to different stressful conditions.


Asunto(s)
Fibrosis Quística , Pseudomonas aeruginosa , Humanos , Antibacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fibrosis Quística/microbiología , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Factor sigma/genética , Factor sigma/metabolismo , Estrés Fisiológico
5.
Bioorg Med Chem Lett ; 30(21): 127580, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32987133

RESUMEN

The synthesis of new cadiolide analogues was carried out using a one-pot multi component synthesis. The antibacterial activity of these molecules was evaluated on standard and antibiotic resistant bacterial strains chosen for their involvement in human health or in food-born poisoning. Four molecules have shown good activities with MICs of 2 µg/mL-1. The introduction of an indole group or the conversion of the lactone into lactam have highlighted two new families of molecules with promising antibacterial activity. In addition, most of these active molecules are devoid of cytotoxic activity against keratinocyte cells.


Asunto(s)
4-Butirolactona/farmacología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , 4-Butirolactona/síntesis química , 4-Butirolactona/química , Antibacterianos/síntesis química , Antibacterianos/química , Biopelículas/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
6.
Microbiol Spectr ; 12(4): e0230323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38411953

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.


Asunto(s)
Infecciones por Pseudomonas , Tobramicina , Humanos , Tobramicina/farmacología , Pseudomonas aeruginosa , Fluidez de la Membrana , Factor sigma/genética , Factor sigma/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Infecciones por Pseudomonas/tratamiento farmacológico , Biopelículas , Homeostasis
7.
Biofilm ; 7: 100191, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544741

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen causing chronic infections that are related to its ability to form biofilms. Mechanosensitive ion channels (Mcs) are cytoplasmic membrane proteins whose opening depends on a mechanical stress impacting the lipid bilayer. CmpX is a homologue of the small conductance MscS of Escherichia coli. The cmpX gene is part of a transcriptional cfrX-cmpX unit that is under the control of the cell envelope stress response ECF sigma factor SigX. CmpX was shown to regulate the activity of the hybrid sensor kinase PA1611 involved in the regulation of transition from a planktonic to a biofilm lifestyle. The deletion of cmpX leads to increased biofilm formation under static conditions. Herein, the effect of cmpX overexpression was investigated by confocal laser scanning microscopy in terms of biofilm formation and architecture, and matrix components production, in dynamic conditions. We show that overexpression of cmpX in P. aeruginosa leads to enhanced and altered biofilm architecture that seems to be associated to increased matrix components and the emergence of filamentous cells. These phenotypic alterations might occur potentially through a shear stress induced by the medium flow rate. Importance: CmpX is involved in biofilm formation and cell filamentation with regards to the medium flow.

8.
RSC Med Chem ; 14(8): 1567-1571, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37593573

RESUMEN

Sulfonamides are the oldest class of antibiotics, discovered more than 80 years ago. They are still used today despite the appearance of drug resistance phenomena that limit their prescription. Since the discovery and use of the first sulfa drugs, many analogues have been synthesized in order to obtain new active molecules able to circumvent bacterial resistance. Structurally similar to sulfonamide, the N-acylsulfonamide group arouses interest in the field of medicinal chemistry due to specific physico-chemical properties. We report here the synthesis and antibacterial/antibiofilm activities of 18 sulfa drug analogues with an N-acylsulfonamide moiety. These derivatives were obtained efficiently by sulfo-click reactions between readily available thioacid and sulfonyl azide synthons.

9.
Pharmaceutics ; 15(8)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37631297

RESUMEN

Acne is a chronic inflammatory skin disease that affects the quality of life of patients. Several treatments exist for acne, but their effectiveness tends to decrease over time due to increasing resistance to treatment and associated side effects. To circumvent these issues, a new approach has emerged that involves combating the pathogen Cutibacterium acnes while maintaining the homeostasis of the skin microbiome. Recently, it was shown that the use of a G2 lysine dendrigraft (G2 dendrimer) could specifically decrease the C. acnes phylotype (IAI) involved in acne, compared to non-acne-causing C. acnes (phylotype II) bacteria. In the present study, we demonstrate that the efficacy of this technology is related to its 3D structure, which, in contrast to the linear form, significantly decreases the inflammation factor (IL-8) linked to acne. In addition, our in-vitro data confirm the specific activity of the G2 dendrimer: after treatment of bacterial cultures and biofilms, the G2 dendrimer affected neither non-acneic C. acnes nor commensal bacteria of the skin (Staphylococcus epidermidis, S. hominis, and Corynebacterium minutissimum). In parallel, comparative in-vitro and in-vivo studies with traditional over-the-counter molecules showed G2's effects on the survival of commensal bacteria and the reduction of acne outbreaks. Finally, metagenomic analysis of the cutaneous microbiota of volunteers who applied a finished cosmetic product containing the G2 dendrimer confirmed the ability of G2 to rebalance cutaneous acne microbiota dysbiosis while maintaining commensal bacteria. These results confirm the value of using this G2 dendrimer to gently prevent the appearance of acne vulgaris while respecting the cutaneous microbiota.

10.
Biofilm ; 5: 100131, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37252226

RESUMEN

Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.

11.
Antibiotics (Basel) ; 13(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275318

RESUMEN

The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.

12.
Sci Rep ; 12(1): 8528, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595726

RESUMEN

Anthropogenic atmospheric pollution and immune response regularly expose bacteria to toxic nitrogen oxides such as NO• and NO2. These reactive molecules can damage a wide variety of biomolecules such as DNA, proteins and lipids. Several components of the bacterial envelope are susceptible to be damaged by reactive nitrogen species. Furthermore, the hydrophobic core of the membranes favors the reactivity of nitrogen oxides with other molecules, making membranes an important factor in the chemistry of nitrosative stress. Since bacteria are often exposed to endogenous or exogenous nitrogen oxides, they have acquired protection mechanisms against the deleterious effects of these molecules. By exposing bacteria to gaseous NO2, this work aims to analyze the physiological effects of NO2 on the cell envelope of the airborne bacterium Pseudomonas fluorescens MFAF76a and its potential adaptive responses. Electron microscopy showed that exposure to NO2 leads to morphological alterations of the cell envelope. Furthermore, the proteomic profiling data revealed that these cell envelope alterations might be partly explained by modifications of the synthesis pathways of multiple cell envelope components, such as peptidoglycan, lipid A, and phospholipids. Together these results provide important insights into the potential adaptive responses to NO2 exposure in P. fluorescens MFAF76a needing further investigations.


Asunto(s)
Dióxido de Nitrógeno , Pseudomonas fluorescens , Dióxido de Nitrógeno/toxicidad , Fosfolípidos/metabolismo , Proteómica , Pseudomonas fluorescens/metabolismo
13.
Life (Basel) ; 12(4)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35455029

RESUMEN

Bacteria can bind on clothes, but the impacts of textiles leachables on cutaneous bacteria remain unknown. Here, we studied for the first time the effects of cotton and flax obtained through classical and soft ecological agriculture on the representatives S. aureus and S. epidermidis bacteria of the cutaneous microbiota. Crude flax showed an inhibitory potential on S. epidermidis bacterial lawns whereas cotton had no effect. Textile fiber leachables were produced in bacterial culture media, and these extracts were tested on S. aureus and S. epidermidis. Bacterial growth was not impacted, but investigation by the crystal violet technique and confocal microscopy showed that all extracts affected biofilm formation by the two staphylococci species. An influence of cotton and flax culture conditions was clearly observed. Flax extracts had strong inhibitory impacts and induced the formation of mushroom-like defense structures by S. aureus. Conversely, production of biosurfactant by bacteria and their surface properties were not modified. Resistance to antibiotics also remained unchanged. All textile extracts, and particularly soft organic flax, showed strong inhibitory effects on S. aureus and S. epidermidis cytotoxicity on HaCaT keratinocytes. Analysis of flax leachables showed the presence of benzyl alcohol that could partly explain the effects of flax extracts.

14.
Microorganisms ; 10(8)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36013994

RESUMEN

Bacteria are often exposed to nitrosative stress from their environment, from atmospheric pollution or from the defense mechanisms of other organisms. Reactive nitrogen species (RNS), which mediate nitrosative stress, are notably involved in the mammalian immune response through the production of nitric oxide (NO) by the inducible NO synthase iNOS. RNS are highly reactive and can alter various biomolecules such as lipids, proteins and DNA, making them toxic for biological organisms. Resistance to RNS is therefore important for the survival of bacteria in various environments, and notably to successfully infect their host. The fuel combustion processes used in industries and transports are responsible for the emission of important quantities of two major RNS, NO and the more toxic nitrogen dioxide (NO2). Human exposure to NO2 is notably linked to increases in lung infections. While the response of bacteria to NO in liquid medium is well-studied, few data are available on their exposure to gaseous NO and NO2. This study showed that NO2 is much more toxic than NO at similar concentrations for the airborne bacterial strain Pseudomonas fluorescens MFAF76a. The response to NO2 involves a wide array of effectors, while the response to NO seemingly focuses on the Hmp flavohemoprotein. Results showed that NO2 induces the production of other RNS, unlike NO, which could explain the differences between the effects of these two molecules.

15.
Microbiol Spectr ; 10(5): e0154822, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36036571

RESUMEN

Pf4 is a filamentous bacteriophage integrated as a prophage into the genome of Pseudomonas aeruginosa PAO1. Pf4 virions can be produced without killing P. aeruginosa. However, cell lysis can occur during superinfection when Pf virions successfully infect a host lysogenized by a Pf superinfective variant. We have previously shown that infection of P. aeruginosa PAO1 with a superinfective Pf4 variant abolished twitching motility and altered biofilm architecture. More precisely, most of the cells embedded into the biofilm were showing a filamentous morphology, suggesting the activation of the cell envelope stress response involving both AlgU and SigX extracytoplasmic function sigma factors. Here, we show that Pf4 variant infection results in a drastic dysregulation of 3,360 genes representing about 58% of P. aeruginosa genome; of these, 70% of the virulence factors encoding genes show a dysregulation. Accordingly, Pf4 variant infection (termed Pf4*) causes in vivo reduction of P. aeruginosa virulence and decreased production of N-acyl-homoserine lactones and 2-alkyl-4-quinolones quorum-sensing molecules and related virulence factors, such as pyocyanin, elastase, and pyoverdine. In addition, the expression of genes involved in metabolism, including energy generation and iron homeostasis, was affected, suggesting further relationships between virulence and central metabolism. Altogether, these data show that Pf4 phage variant infection results in complex network dysregulation, leading to reducing acute virulence in P. aeruginosa. This study contributes to the comprehension of the bacterial response to filamentous phage infection. IMPORTANCE Filamentous bacteriophages can become superinfective and infect P. aeruginosa, even though they are inserted in the genome as lysogens. Despite this productive infection, growth of the host is only mildly affected, allowing the study of the interaction between the phage and the host, which is not possible in the case of lytic phages killing rapidly their host. Here, we demonstrate by transcriptome and phenotypic analysis that the infection by a superinfective filamentous phage variant causes a massive disruption in gene expression, including those coding for virulence factors and metabolic pathways.


Asunto(s)
Bacteriófagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Virulencia , Piocianina/metabolismo , Bacteriófagos/genética , Acil-Butirolactonas/metabolismo , Percepción de Quorum , Biopelículas , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Hierro/metabolismo , Elastasa Pancreática/metabolismo , 4-Quinolonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
Adv Sci (Weinh) ; 9(7): e2103262, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032112

RESUMEN

Pseudomonas aeruginosa biofilms cause chronic, antibiotic tolerant infections in wounds and lungs. Numerous recent studies demonstrate that bacteria can detect human communication compounds through specific sensor/receptor tools that modulate bacterial physiology. Consequently, interfering with these mechanisms offers an exciting opportunity to directly affect the infection process. It is shown that the human hormone Atrial Natriuretic Peptide (hANP) both prevents the formation of P. aeruginosa biofilms and strongly disperses established P. aeruginosa biofilms. This hANP action is dose-dependent with a strong effect at low nanomolar concentrations and takes effect in 30-120 min. Furthermore, although hANP has no antimicrobial effect, it acts as an antibiotic adjuvant. hANP enhances the antibiofilm action of antibiotics with diverse modes of action, allowing almost full biofilm eradication. The hANP effect requires the presence of the P. aeruginosa sensor AmiC and the AmiR antiterminator regulator, indicating a specific mode of action. These data establish the activation of the ami pathway as a potential mechanism for P. aeruginosa biofilm dispersion. hANP appears to be devoid of toxicity, does not enhance bacterial pathogenicity, and acts synergistically with antibiotics. These data show that hANP is a promising powerful antibiofilm weapon against established P. aeruginosa biofilms in chronic infections.


Asunto(s)
Factor Natriurético Atrial , Pseudomonas aeruginosa , Antibacterianos/farmacología , Factor Natriurético Atrial/metabolismo , Factor Natriurético Atrial/farmacología , Biopelículas , Humanos , Pseudomonas aeruginosa/metabolismo , Virulencia
17.
Microorganisms ; 10(9)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36144390

RESUMEN

Phthalates are used in a variety of applications-for example, as plasticizers in polyvinylchloride products to improve their flexibility-and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.

18.
Microorganisms ; 9(5)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925587

RESUMEN

Many studies performed in the last decade have focused on the cutaneous microbiota. It has been shown that this microbiota plays a key role in skin homeostasis. Considered as "a second barrier" to the environment, it is very important to know how it reacts to exogenous aggressions. The cosmetics industry has a started to use this microbiota as a source of natural ingredients, particularly ones that confer photoprotection against ultraviolet (UV) rays. Interestingly, it has been demonstrated that bacterial molecules can block UV rays or reverse their harmful effects. Oral probiotics containing living microorganisms have also shown promising results in restoring skin homeostasis and reversing the negative effects of UV rays. Microbial-based active sunscreen compounds have huge potential for use as next-generation photoprotection products.

19.
Sci Rep ; 11(1): 11533, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34075148

RESUMEN

We previously showed that the physiological concentration of 17ß-estradiol in the vaginal environment is sufficient to affect the membrane dynamics and adhesion phenotype of the Lactobacillus crispatus strain CIP104459. However, L. crispatus is a heterogeneous species. Here, we investigated the effect of 17ß-estradiol on the recently isolated L. crispatus vaginal strain V4, related to a cluster distant from CIP104459 and at the limit of being a different subspecies. Grown in the same medium, the two strains expressed a highly similar pool of proteins. However, in contrast to CIP104459, L. crispatus V4 showed high aggregation potential and 17ß-estradiol promoted this phenotype. This effect was associated with large changes in cell-surface polarity and Lewis acid/base properties. In addition, we observed no effect on the membrane dynamics, contrary to CIP104459. These results can be explained by differences in the properties and organization of the S layer between the two strains. However, as for CIP104459, 17ß-estradiol increased biosurfactant production of L. crispatus V4 and their adhesion to vaginal cells. This suggests that 17ß-estradiol agonists would be valuable tools to favor a stable re-implantation of L. crispatus in the vaginal mucosa.


Asunto(s)
Estradiol/farmacología , Lactobacillus crispatus/metabolismo , Vagina/microbiología , Femenino , Humanos , Lactobacillus crispatus/aislamiento & purificación
20.
Sci Rep ; 11(1): 7133, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785829

RESUMEN

Lactobacilli and estrogens play essential roles in vaginal homeostasis. We investigated the potential direct effect of 17ß-estradiol on a vaginal strain of Lactobacillus crispatus, the major bacterial species of the vaginal microbiota. 17ß-estradiol (10-6 to 10-10 M) had no effect on L. crispatus growth, but markedly affected the membrane dynamics of this bacterium. This effect appeared consistent with a signal transduction process. The surface polarity and aggregation potential of the bacterium were unaffected by exposure to 17ß-estradiol, but its mean size was significantly reduced. 17ß-estradiol also promoted biosurfactant production by L. crispatus and adhesion to vaginal VK2/E6E7 cells, but had little effect on bacterial biofilm formation activity. Bioinformatic analysis of L. crispatus identified a membrane lipid raft-associated stomatin/prohibitin/flotillin/HflK domain containing protein as a potential 17ß-estradiol binding site. Overall, our results reveal direct effects of 17ß-estradiol on L. crispatus. These effects are of potential importance in the physiology of the vaginal environment, through the promotion of lactobacillus adhesion to the mucosa and protection against pathogens.


Asunto(s)
Estradiol/fisiología , Lactobacillus crispatus/fisiología , Vagina/microbiología , Adhesión Celular , Agregación Celular , Femenino , Humanos , Fluidez de la Membrana , Receptores de Estradiol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA