Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2116887119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377796

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are neurodevelopmental diseases characterized by refractory epilepsy, distinct electroencephalographic and neuroradiological features, and various degrees of developmental delay. Mutations in KCNQ2, KCNQ3, and, more rarely, KCNQ5 genes encoding voltage-gated potassium channel subunits variably contributing to excitability control of specific neuronal populations at distinct developmental stages have been associated to DEEs. In the present work, the clinical features of two DEE patients carrying de novo KCNQ5 variants affecting the same residue in the pore region of the Kv7.5 subunit (G347S/A) are described. The in vitro functional properties of channels incorporating these variants were investigated with electrophysiological and biochemical techniques to highlight pathophysiological disease mechanisms. Currents carried by Kv7.5 G347 S/A channels displayed: 1) large (>10 times) increases in maximal current density, 2) the occurrence of a voltage-independent component, 3) slower deactivation kinetics, and 4) hyperpolarization shift in activation. All these functional features are consistent with a gain-of-function (GoF) pathogenetic mechanism. Similar functional changes were also observed when the same variants were introduced at the corresponding position in Kv7.2 subunits. Nonstationary noise analysis revealed that GoF effects observed for both Kv7.2 and Kv7.5 variants were mainly attributable to an increase in single-channel open probability, without changes in membrane abundance or single-channel conductance. The mutation-induced increase in channel opening probability was insensitive to manipulation of membrane levels of the critical Kv7 channel regulator PIP2. These results reveal a pathophysiological mechanism for KCNQ5-related DEEs, which might be exploited to implement personalized treatments.


Asunto(s)
Epilepsia Refractaria , Mutación con Ganancia de Función , Canales de Potasio KCNQ , Adolescente , Niño , Epilepsia Refractaria/genética , Femenino , Humanos , Canales de Potasio KCNQ/genética , Masculino , Mutación , Fenotipo , Probabilidad
2.
Am J Physiol Cell Physiol ; 326(3): C893-C904, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284124

RESUMEN

Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.


Asunto(s)
Barrera Hematoencefálica , Carbamatos , Epilepsia , Fenilendiaminas , Animales , Ratas , Células Endoteliales , Ácido Kaínico/toxicidad , Encéfalo
3.
Annu Rev Pharmacol Toxicol ; 58: 625-648, 2018 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-28992433

RESUMEN

Kv7 channels are voltage-gated potassium channels encoded by KCNQ genes that have a considerable physiological impact in many cell types. This reliance upon Kv7 channels for normal cellular function, as well as the existence of hereditary disorders caused by mutations to KCNQ genes, means that pharmacological targeting of these channels has broad appeal. Consequently, a plethora of chemical entities that modulate Kv7 channel activity have been developed. Moreover, Kv7 channels are influenced by many disparate intracellular mediators and trafficking processes, making upstream targeting an appealing prospect for therapeutic development. This review covers the main characteristics of these multifunctional and versatile channels with the aim of providing insight into the therapeutic value of targeting these channels.


Asunto(s)
Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Animales , Transporte Biológico/genética , Humanos , Mutación/genética , Transducción de Señal/genética
4.
Arterioscler Thromb Vasc Biol ; 40(10): 2468-2480, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32787517

RESUMEN

OBJECTIVE: The SMIT1 (sodium:myo-inositol transporter 1) regulates myo-inositol movement into cells and responses to hypertonic stimuli. Alteration of myo-inositol levels has been associated with several diseases, including hypertension, but there is no evidence of a functional role of SMIT1 in the vasculature. Recent evidence showed that in the nervous system SMIT1 interacted and modulated the function of members of the Kv7 family of voltage-gated potassium channels, which are also expressed in the vasculature where they regulate arterial contractility. Therefore, in this study, we evaluated whether SMIT1 was functionally relevant in arterial smooth muscle. Approach and Results: Immunofluorescence and polymerase chain reaction experiments revealed that SMIT1 was expressed in rat renal and mesenteric vascular smooth muscle cells. Isometric tension recordings showed that incubation of renal arteries with raffinose and myo-inositol (which increases SMIT1 expression) reduced the contractile responses to methoxamine, an effect that was abolished by preincubation with the pan-Kv7 blocker linopirdine and by molecular knockdown of Kv7.4 and Kv7.5. Knockdown of SMIT1 increased the contraction of renal arteries induced by methoxamine, impaired the response to the Kv7.2-Kv7.5 activator ML213 but did not interfere with the relaxant responses induced by openers of other potassium channels. Proximity ligation assay showed that SMIT1 interacted with heteromeric channels formed by Kv7.4 and Kv7.5 proteins in both renal and mesenteric vascular smooth muscle cells. Patch-clamp experiments showed that incubation with raffinose plus myo-inositol increased Kv7 currents in vascular smooth muscle cells. CONCLUSIONS: SMIT1 protein is expressed in vascular smooth muscle cells where it modulates arterial contractility through an association with Kv7.4/Kv7.5 heteromers.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Simportadores/metabolismo , Vasoconstricción , Animales , Células CHO , Cricetulus , Canales de Potasio KCNQ/genética , Potenciales de la Membrana , Arterias Mesentéricas/metabolismo , Unión Proteica , Ratas , Arteria Renal/metabolismo , Transducción de Señal , Simportadores/genética , Técnicas de Cultivo de Tejidos
5.
Pflugers Arch ; 472(7): 881-898, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32506321

RESUMEN

Seizures are the most common neurological manifestation in the newborn period, with an estimated incidence of 1.8-3.5 per 1000 live births. Prolonged or intractable seizures have a detrimental effect on cognition and brain function in experimental animals and are associated with adverse long-term neurodevelopmental sequelae and an increased risk of post-neonatal epilepsy in humans. The developing brain is particularly susceptible to the potentially severe effects of epilepsy, and epilepsy, especially when refractory to medications, often results in a developmental and epileptic encephalopathy (DEE) with developmental arrest or regression. DEEs can be primarily attributed to genetic causes. Given the critical role of potassium (K+) currents with distinct subcellular localization, biophysical properties, modulation, and pharmacological profile in regulating intrinsic electrical properties of neurons and their responsiveness to synaptic inputs, it is not too surprising that genetic research in the past two decades has identified several K+ channel genes as responsible for a large fraction of DEE. In the present article, we review the genetically determined epileptic channelopathies affecting three members of the Kv7 family, namely Kv7.2 (KCNQ2), Kv7.3 (KCNQ3), and Kv7.5 (KCNQ5); we review the phenotypic spectrum of Kv7-related epileptic channelopathies, the different genetic and pathogenetic mechanisms, and the emerging genotype-phenotype correlations which may prove crucial for prognostic predictions, disease management, parental counseling, and individually tailored therapeutic attempts.


Asunto(s)
Canalopatías/genética , Canalopatías/patología , Canal de Potasio KCNQ1/genética , Neuronas/patología , Convulsiones/genética , Convulsiones/patología , Animales , Humanos
6.
Arterioscler Thromb Vasc Biol ; 38(9): 2091-2102, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30002060

RESUMEN

Objective- In renal arteries, inhibitors of G protein ßγ subunits (Gßγ) reduce Kv7 activity and inhibit Kv7-dependent receptor-mediated vasorelaxations. However, the mechanisms underlying receptor-mediated relaxation are artery specific. Consequently, the aim of this study was to ascertain the role of Gßγ in Kv7-dependent vasorelaxations of the rat vasculature. Approach and Results- Isometric tension recording was performed in isolated rat renal, mesenteric, and cerebral arteries to study isoproterenol and calcitonin gene-related peptide relaxations. Kv7.4 was knocked down via morpholino transfection while inhibition of Gßγ was investigated with gallein and M119K. Proximity ligation assay was performed on isolated myocytes to study the association between Kv7.4 and G protein ß subunits or signaling intermediaries. Isoproterenol or calcitonin gene-related peptide-induced relaxations were attenuated by Kv7.4 knockdown in all arteries studied. Inhibition of Gßγ with gallein or M119K had no effect on isoproterenol-mediated relaxations in mesenteric artery but had a marked effect on calcitonin gene-related peptide-induced responses in mesenteric artery and cerebral artery and isoproterenol responses in renal artery. Isoproterenol increased association with Kv7.4 and Rap1a in mesenteric artery which were not sensitive to gallein, whereas in renal artery, isoproterenol increased Kv7.4-AKAP (A-kinase anchoring protein) associations in a gallein-sensitive manner. Conclusions- The Gßγ-Kv7 relationship differs between vessels and is an essential requirement for AKAP, but not Rap-mediated regulation of the channel.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/fisiología , Subunidades gamma de la Proteína de Unión al GTP/fisiología , Canales de Potasio KCNQ/fisiología , Músculo Liso Vascular/fisiología , Vasodilatación , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/farmacología , Arterias Cerebrales/efectos de los fármacos , Arterias Cerebrales/fisiología , Isoproterenol/farmacología , Masculino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Ratas Wistar , Arteria Renal/efectos de los fármacos , Arteria Renal/fisiología , Vasoconstrictores/farmacología , Vasodilatadores/farmacología , Xantenos/farmacología
7.
Proc Natl Acad Sci U S A ; 112(20): 6497-502, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25941381

RESUMEN

Kv7.4 channels are a crucial determinant of arterial diameter both at rest and in response to endogenous vasodilators. However, nothing is known about the factors that ensure effective activity of these channels. We report that G-protein ßγ subunits increase the amplitude and activation rate of whole-cell voltage-dependent K(+) currents sensitive to the Kv7 blocker linopirdine in HEK cells heterologously expressing Kv7.4, and in rat renal artery myocytes. In excised patch recordings, Gßγ subunits (2-250 ng /mL) enhanced the open probability of Kv7.4 channels without changing unitary conductance. Kv7 channel activity was also augmented by stimulation of G-protein-coupled receptors. Gallein, an inhibitor of Gßγ subunits, prevented these stimulatory effects. Moreover, gallein and two other structurally different Gßγ subunit inhibitors (GRK2i and a ß-subunit antibody) abolished Kv7 channel currents in the absence of either Gßγ subunit enrichment or G-protein-coupled receptor stimulation. Proximity ligation assay revealed that Kv7.4 and Gßγ subunits colocalized in HEK cells and renal artery smooth muscle cells. Gallein disrupted this colocalization, contracted whole renal arteries to a similar degree as the Kv7 inhibitor linopirdine, and impaired isoproterenol-induced relaxations. Furthermore, mSIRK, which disassociates Gßγ subunits from α subunits without stimulating nucleotide exchange, relaxed precontracted arteries in a linopirdine-sensitive manner. These results reveal that Gßγ subunits are fundamental for Kv7.4 activation and crucial for vascular Kv7 channel activity, which has major consequences for the regulation of arterial tone.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Hemodinámica/fisiología , Canales de Potasio KCNQ/metabolismo , Animales , Bovinos , Electromiografía , Células HEK293 , Humanos , Inmunoprecipitación , Masculino , Técnicas de Placa-Clamp , Ratas , Ratas Wistar
8.
Pflugers Arch ; 469(2): 213-223, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27981364

RESUMEN

Kv7.4 channels are key determinants of arterial contractility and cochlear mechanosensation that, like all Kv7 channels, have an obligatory requirement for phosphatidylinositol 4,5-bisphosphate (PIP2). ßγ G proteins (Gßγ) have been identified as novel positive regulators of Kv7.4. The present study ascertained whether Gßγ increased Kv7.4 open probability through an increased sensitivity to PIP2. In HEK cells stably expressing Kv7.4, PIP2 or Gßγ increased open probability in a concentration dependent manner. Depleting PIP2 prevented any Gßγ-mediated stimulation whilst an array of Gßγ inhibitors prohibited any PIP2-induced current enhancement. A combination of PIP2 and Gßγ at sub-efficacious concentrations increased channel open probability considerably. The stimulatory effects of three Kv7.2-7.5 channel activators were also lost by PIP2 depletion or Gßγ inhibitors. This study alters substantially our understanding of the fundamental processes that dictate Kv7.4 activity, revealing a more complex and subtle paradigm where the reliance on local phosphoinositide is dictated by interaction with Gßγ.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Canales de Potasio KCNQ/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Línea Celular , Células HEK293 , Humanos , Activación del Canal Iónico/fisiología , Fosfatidilinositoles/metabolismo
9.
Arterioscler Thromb Vasc Biol ; 36(12): 2404-2411, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27789473

RESUMEN

OBJECTIVE: To establish the role of Kv7 channels in EPAC (exchange protein directly activated by cAMP)-dependent relaxations of the rat vasculature and to investigate whether this contributes to ß-adrenoceptor-mediated vasorelaxations. APPROACH AND RESULTS: Isolated rat renal and mesenteric arteries (RA and MA, respectively) were used for isometric tension recording to study the relaxant effects of a specific EPAC activator and the ß-adrenoceptor agonist isoproterenol in the presence of potassium channel inhibitors and cell signaling modulators. Isolated myocytes were used in proximity ligation assay studies to detect localization of signaling intermediaries with Kv7.4 before and after cell stimulation. Our studies showed that the EPAC activator (8-pCPT-2Me-cAMP-AM) produced relaxations and enhanced currents of MA and RA that were sensitive to linopirdine (Kv7 inhibitor). Linopirdine also inhibited isoproterenol-mediated relaxations in both RA and MA. In the MA, isoproterenol relaxations were sensitive to EPAC inhibition, but not protein kinase A inhibition. In contrast, isoproterenol relaxations in RA were attenuated by protein kinase A but not by EPAC inhibition. Proximity ligation assay showed a localization of Kv7.4 with A-kinase anchoring protein in both vessels in the basal state, which increased only in the RA with isoproterenol stimulation. In the MA, but not the RA, a localization of Kv7.4 with both Rap1a and Rap2 (downstream of EPAC) increased with isoproterenol stimulation. CONCLUSIONS: EPAC-dependent vasorelaxations occur in part via activation of Kv7 channels. This contributes to the isoproterenol-mediated relaxation in mesenteric, but not renal, arteries.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/metabolismo , Canales de Potasio KCNQ/metabolismo , Arterias Mesentéricas/metabolismo , Arteria Renal/metabolismo , Vasodilatación , Proteínas de Anclaje a la Quinasa A/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Relación Dosis-Respuesta a Droga , Factores de Intercambio de Guanina Nucleótido/agonistas , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Células HEK293 , Humanos , Técnicas In Vitro , Canales de Potasio KCNQ/agonistas , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/genética , Masculino , Potenciales de la Membrana , Arterias Mesentéricas/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Ratas Wistar , Arteria Renal/efectos de los fármacos , Transducción de Señal , Transfección , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Proteínas de Unión al GTP rap1/metabolismo
10.
Proc Natl Acad Sci U S A ; 110(11): 4386-91, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23440208

RESUMEN

Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.


Asunto(s)
Epilepsia Benigna Neonatal/metabolismo , Canal de Potasio KCNQ2/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Animales , Anticonvulsivantes/farmacología , Células CHO , Carbamatos/farmacología , Cricetinae , Cricetulus , Epilepsia Benigna Neonatal/genética , Epilepsia Benigna Neonatal/patología , Genotipo , Humanos , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Modelos Moleculares , Fenotipo , Fenilendiaminas/farmacología , Células Piramidales/metabolismo , Células Piramidales/patología , Homología Estructural de Proteína
11.
Neurochem Res ; 39(5): 901-10, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24667981

RESUMEN

Large conductance, calcium-activated potassium channels [big potassium (BK) channel] consist of a tetramer of pore-forming α-subunit and distinct accessory ß-subunits (ß1-4) that modify the channel's properties. In this study, we analyzed the effects of BK channel activators and blockers on glutamate and γ-aminobutyric acid (GABA) release from synaptosomes isolated from the cerebral cortices or trigeminal caudal nuclei (TCN) of rats. Real-time polymerase chain reaction was used to characterize BK channel α and ß(1-4) subunit expression in the cortex and in the trigeminal ganglia (TG), whose neurons project primary terminal afferents into the TCN. Immunocytochemistry was used to localize these subunits on cortical and TCN synaptosomes. The BK channels regulating [(3)H]D-aspartate release from primary afferent nerve terminals projecting into the TCN displayed limited sensitivity to iberiotoxin, whereas those expressed on cortical synaptosomes were highly sensitive to this toxin. BK channels did not appear to be present on GABAergic nerve terminals from the TCN since [(3)H]-γ-aminobutyric acid release in this model was unaffected by BK channel activators or blockers. Gene expression studies revealed expression levels of the α subunit in the TG that were only 31.2 ± 2.1% of those found in cortical tissues. The ß4 subunit was the accessory subunit expressed most abundantly in both the cortex and TG. Levels of ß1 and ß2 were low in both these areas although ß2 expression in the TG was higher than that found in the cortex. Immunocytochemistry experiments showed that co-localization of α and ß4 subunits (the accessory subunit most abundantly expressed in both brain areas) was more common in TCN synaptosomes than in cortical synaptosomes. On the basis of these findings, it is reasonable to hypothesize that BK channels expressed on glutamatergic terminals in the TCN and cortex have distinct pharmacological profiles, which probably reflect different α and ß subunit combinations. Channels in the cortex seem to be composed mainly of α subunits and to a lesser degree by α and ß4 subunits, whereas in the TG the α + ß4 combination seems to prevail (although α and/or α + ß2 channels cannot be excluded). In light of the BK channels' selective control of excitatory transmission and their pharmacological diversity, their effects on primary glutamatergic afferents projecting to TCN represent a potential target for drug therapy of migraines and other types of orofacial pain.


Asunto(s)
Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Canales de Potasio de Gran Conductancia Activados por el Calcio/biosíntesis , Núcleo Caudal del Trigémino/metabolismo , Animales , Ácido Aspártico/metabolismo , Bencimidazoles/farmacología , Indoles/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/fisiología , Masculino , Péptidos/farmacología , Subunidades de Proteína/metabolismo , Ratas Wistar , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
12.
Pharmacol Res ; 87: 80-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24973659

RESUMEN

In the present study, the neuroprotective effects of the adipokine leptin, and the molecular mechanism involved, have been studied in rat and mice cortical neurons exposed to N-methyl-d-aspartate (NMDA) in vitro. In rat cortical neurons, leptin elicited neuroprotective effects against NMDA-induced cell death, which were concentration-dependent (10-100 ng/ml) and largest when the adipokine was preincubated for 2h before the neurotoxic stimulus. In both rat and mouse cortical neurons, leptin-induced neuroprotection was fully antagonized by paxilline (Pax, 0.01-1 µM) and iberiotoxin (Ibtx, 1-100 nM), with EC50s of 38 ± 10 nM and 5 ± 2 nM for Pax and Ibtx, respectively, close to those reported for Pax- and Ibtx-induced Ca(2+)- and voltage-activated K(+) channels (Slo1 BK channels) blockade; the BK channel opener NS1619 (1-30 µM) induced a concentration-dependent protection against NMDA-induced excitotoxicity. Moreover, cortical neurons from mice lacking one or both alleles coding for Slo1 BK channel pore-forming subunits were insensitive to leptin-induced neuroprotection. Finally, leptin exposure dose-dependently (10-100 ng/ml) increased intracellular Ca(2+) levels in rat cortical neurons. In conclusion, our results suggest that Slo1 BK channel activation following increases in intracellular Ca(2+) levels is a critical step for leptin-induced neuroprotection in NMDA-exposed cortical neurons in vitro, thus highlighting leptin-based intervention via BK channel activation as a potential strategy to counteract neurodegenerative diseases.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Leptina/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Ratones Transgénicos , N-Metilaspartato , Neuronas/metabolismo , Ratas Wistar
13.
Physiol Rep ; 11(3): e15583, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36750122

RESUMEN

In addition, to their established role in cardiac myocytes and neurons, ion channels encoded by ether-a-go-go-related genes (ERG1-3 or kcnh2,3 and 6) (kcnh2) are functionally relevant in phasic smooth muscle. The aim of the study was to determine the expression and functional impact of ERG expression products in rat urinary bladder smooth muscle using quantitative polymerase chain reaction, immunocytochemistry, whole-cell patch-clamp and isometric tension recording. kcnh2 was expressed in rat bladder, whereas kcnh6 and kcnh3 expression were negligible. Immunofluorescence for the kcnh2 expression product Kv11.1 was detected in the membrane of isolated smooth muscle cells. Potassium currents with voltage-dependent characteristics consistent with Kv11.1 channels and sensitive to the specific blocker E4031 (1 µM) were recorded from isolated detrusor smooth muscles. Disabling Kv11.1 activity with specific blockers (E4031 and dofetilide, 0.2-20 µM) augmented spontaneous contractions to a greater extent than BKCa channel blockers, enhanced carbachol-driven activity, increased nerve stimulation-mediated contractions, and impaired ß-adrenoceptor-mediated inhibitory responses. These data establish for the first time that Kv11.1 channels are key determinants of contractility in rat detrusor smooth muscle.


Asunto(s)
Éter , Vejiga Urinaria , Ratas , Animales , Vejiga Urinaria/metabolismo , Éter/metabolismo , Potenciales de la Membrana/fisiología , Músculo Liso/metabolismo , Éteres de Etila/metabolismo , Éteres/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo
14.
Br J Pharmacol ; 180(2): 174-193, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36085551

RESUMEN

BACKGROUND AND PURPOSE: Kcnq-encoded KV 7 channels (termed KV 7.1-5) regulate vascular smooth muscle cell (VSMC) contractility at rest and as targets of receptor-mediated responses. However, the current data are mostly derived from males. Considering the known effects of sex, the oestrous cycle and sex hormones on vascular reactivity, here we have characterised the molecular and functional properties of KV 7 channels from renal and mesenteric arteries from female Wistar rats separated into di-oestrus and met-oestrus (F-D/M) and pro-oestrus and oestrus (F-P/E). EXPERIMENTAL APPROACH: RT-qPCR, immunocytochemistry, proximity ligation assay and wire myography were performed in renal and mesenteric arteries. Circulating sex hormone concentrations were determined by liquid chromatography-tandem mass spectrometry. Whole-cell electrophysiology was undertaken on cells expressing KV 7.4 channels in association with G-protein-coupled oestrogen receptor 1 (GPER1). KEY RESULTS: The KV 7.2-5 activators S-1 and ML213 and the pan-KV 7 inhibitor linopirdine were more effective in arteries from F-D/M compared with F-P/E animals. In VSMCs isolated from F-P/E rats, exploratory evidence indicates reduced membrane abundance of KV 7.4 but not KV 7.1, KV 7.5 and Kcne4 when compared with cells from F-D/M. Plasma oestradiol was higher in F-P/E compared with F-D/M, and progesterone showed the converse pattern. Oestradiol/GPER1 agonist G-1 diminished KV 7.4 encoded currents and ML213 relaxations and reduced the membrane abundance of KV 7.4 and interaction between KV 7.4 and heat shock protein 90 (HSP90), in arteries from F-D/M but not F-P/E. CONCLUSIONS AND IMPLICATIONS: GPER1 signalling decreased KV 7.4 membrane abundance in conjunction with diminished interaction with HSP90, giving rise to a 'pro-contractile state'.


Asunto(s)
Arterias Mesentéricas , Miocitos del Músculo Liso , Masculino , Ratas , Femenino , Animales , Ratas Wistar , Miografía , Estradiol/farmacología , Estradiol/metabolismo
15.
bioRxiv ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38116028

RESUMEN

Introduction: Sodium dependent glucose transporter 2 (SGLT2 or SLC5A2) inhibitors effectively lower blood glucose and are also approved treatments for heart failure independent of raised glucose. One component of the cardioprotective effect is reduced cardiac afterload but the mechanisms underlying peripheral relaxation are ill defined and variable. We speculated that SGLT2 inhibitors promoted arterial relaxation via the release of the potent vasodilator calcitonin gene-related peptide (CGRP) from sensory nerves independent of glucose transport. Experimental approach: The functional effects of SGLT2 inhibitors (dapagliflozin, empagliflozin, ertugliflozin) and the sodium/hydrogen exchanger 1 (NHE1) blocker cariporide were determined on pre-contracted mesenteric and renal arteries from male Wistar rats using Wire-Myography. SGLT2, NHE1, CGRP and TRPV1 expression in both arteries was determined by Western blot and immunohistochemistry. Kv7.4/5/KCNE4 and TRPV1 currents were measured in the presence and absence of dapagliflozin and empagliflozin. Results: All SGLT2 inhibitors produced a concentration dependent relaxation (1µM-100µM) of mesenteric arteries that was considerably greater than in renal arteries. Cariporide relaxed mesenteric arteries but not renal arteries. Immunohistochemistry with TRPV1 and CGRP antibodies revealed a dense innervation of sensory nerves in mesenteric arteries that was absent in renal arteries. Consistent with a greater sensory nerve component, the TRPV1 agonist capsaicin produced significantly greater relaxations in mesenteric arteries compared to renal arteries. Relaxations to dapagliflozin, empagliflozin and cariporide were attenuated by incubation with the CGRP receptor antagonist BIBN-4096, the Kv7 blocker linopirdine and the TRPV1 antagonist AMG-517 as well as by depletion of neuronal CGRP. Neither dapagliflozin nor empagliflozin directly activated heterologously expressed TRPV1 channels or Kv7 channels. Strikingly, only NHE1 colocalised with TRPV1 in sensory nerves, and cariporide pre-application prevented the relaxant response to SGLT2 inhibitors. Conclusions: SGLT2 inhibitors relax mesenteric arteries by a novel mechanism involving the release of CGRP from sensory nerves following inhibition of the Na + /H + exchanger.

16.
Biochem Pharmacol ; 197: 114931, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35085542

RESUMEN

Mitochondrial K+ permeability regulates neuronal apoptosis, energy metabolism, autophagy, and protection against ischemia-reperfusion injury. Kv7.4 channels have been recently shown to regulate K+ permeability in cardiac mitochondria and exert cardioprotective effects. Here, the possible expression and functional role of Kv7.4 channels in regulating membrane potential, radical oxygen species (ROS) production, and Ca2+ uptake in neuronal mitochondria was investigated in both clonal (F11 cells) and native brain neurons. In coupled mitochondria isolated from F11 cells, K+-dependent changes of mitochondrial membrane potential (ΔΨ) were unaffected by the selective mitoBKCa channel blocker iberiotoxin and only partially inhibited by the mitoKATP blockers glyburide or ATP. Interestingly, K+-dependent ΔΨ decrease was significantly reduced by the Kv7 blocker XE991 and enhanced by the Kv7 activator retigabine. Among Kv7s, western blot experiments showed the expression of only Kv7.4 subunits in F11 mitochondrial fractions; immunocytochemistry experiments showed a strong overlap between the Kv7.4 fluorescent signal and that of the mitochondrial marker Mitotracker. Silencing of Kv7.4 expression significantly suppressed retigabine-dependent decrease in ΔΨ in intact F11 cells. Expression of Kv7.4 subunits was also detected by western blot in isolated mitochondria from total mouse brain and by immunofluorescence in mouse primary cortical neurons. Pharmacological experiments revealed a relevant functional role for Kv7.4 channels in regulating membrane potential and Ca2+ uptake in isolated neuronal mitochondria, as well as ΔΨ and ROS production in intact cortical neurons. In conclusion, these findings provide the first experimental evidence for the expression of Kv7.4 channels and their contribution in regulating K+ permeability of neuronal mitochondria.


Asunto(s)
Canales de Potasio KCNQ/biosíntesis , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/metabolismo , Neuronas/metabolismo , Potasio/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Femenino , Gliburida/farmacología , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Permeabilidad/efectos de los fármacos , Embarazo
17.
J Med Chem ; 65(16): 11340-11364, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35972998

RESUMEN

Neuronal Kv7 channels represent important pharmacological targets for hyperexcitability disorders including epilepsy. Retigabine is the prototype Kv7 activator clinically approved for seizure treatment; however, severe side effects associated with long-term use have led to its market discontinuation. Building upon the recently described cryoEM structure of Kv7.2 complexed with retigabine and on previous structure-activity relationship studies, a small library of retigabine analogues has been designed, synthesized, and characterized for their Kv7 opening ability using both fluorescence- and electrophysiology-based assays. Among all tested compounds, 60 emerged as a potent and photochemically stable neuronal Kv7 channel activator. Compared to retigabine, compound 60 displayed a higher brain/plasma distribution ratio, a longer elimination half-life, and more potent and effective anticonvulsant effects in an acute seizure model in mice. Collectively, these data highlight compound 60 as a promising lead compound for the development of novel Kv7 activators for the treatment of hyperexcitability diseases.


Asunto(s)
Anticonvulsivantes , Canal de Potasio KCNQ3 , Animales , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Carbamatos , Canal de Potasio KCNQ2 , Ratones , Fenilendiaminas/química , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico
18.
J Gen Physiol ; 153(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33533890

RESUMEN

The dynein motor protein transports proteins away from the cell membrane along the microtubule network. Recently, we found the microtubule network was important for regulating the membrane abundance of voltage-gated Kv7.4 potassium channels in vascular smooth muscle. Here, we aimed to investigate the influence of dynein on the microtubule-dependent internalization of the Kv7.4 channel. Patch-clamp recordings from HEK293B cells showed Kv7.4 currents were increased after inhibiting dynein function with ciliobrevin D or by coexpressing p50/dynamitin, which specifically interferes with dynein motor function. Mutation of a dynein-binding site in the Kv7.4 C terminus increased the Kv7.4 current and prevented p50 interference. Structured illumination microscopy, proximity ligation assays, and coimmunoprecipitation showed colocalization of Kv7.4 and dynein in mesenteric artery myocytes. Ciliobrevin D enhanced mesenteric artery relaxation to activators of Kv7.2-Kv7.5 channels and increased membrane abundance of Kv7.4 protein in isolated smooth muscle cells and HEK293B cells. Ciliobrevin D failed to enhance the negligible S-1-mediated relaxations after morpholino-mediated knockdown of Kv7.4. Mass spectrometry revealed an interaction of dynein with caveolin-1, confirmed using proximity ligation and coimmunoprecipitation assays, which also provided evidence for interaction of caveolin-1 with Kv7.4, confirming that Kv7.4 channels are localized to caveolae in mesenteric artery myocytes. Lastly, cholesterol depletion reduced the interaction of Kv7.4 with caveolin-1 and dynein while increasing the overall membrane expression of Kv7.4, although it attenuated the Kv7.4 current in oocytes and interfered with the action of ciliobrevin D and channel activators in arterial segments. Overall, this study shows that dynein can traffic Kv7.4 channels in vascular smooth muscle in a mechanism dependent on cholesterol-rich caveolae.


Asunto(s)
Dineínas , Canales de Potasio KCNQ , Membrana Celular , Músculo Liso Vascular , Miocitos del Músculo Liso
19.
J Neurochem ; 115(2): 411-22, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20681950

RESUMEN

In the present study, by means of genetic, biochemical, morphological, and electrophysiological approaches, the role of large-conductance voltage- and Ca(2+)-dependent K(+) channels (BK channels) in the release of excitatory and non-excitatory neurotransmitters at hippocampal and non-hippocampal sites has been investigated. The results obtained show that the pharmacological modulation of pre-synaptic BK channels selectively regulates [(3)H]D-aspartate release from cortical and hippocampal rat synaptosomes, but it fails to influence the release of excitatory neurotransmitters from cerebellar nerve endings or that of [(3)H]GABA, [(3)H]Noradrenaline, or [(3)H]Dopamine from any of the brain regions investigated. Confocal immunofluorescence experiments in hippocampal or cerebrocortical nerve terminals revealed that the main pore-forming BK α subunit was more abundantly expressed in glutamatergic (vGLUT1(+)) versus GABAergic (GAD(65-67)(+)) nerve terminals. Double patch recordings in monosynaptically connected hippocampal neurons in culture confirmed a preferential control exerted by BK channels on glutamate over GABA release. Altogether, the present results highlight a high degree of specificity in the regulation of the release of various neurotransmitters from distinct brain regions by BK channels, supporting the concept that BK channel modulators can be used to selectively limit excessive excitatory amino acid release, a major pathogenetic mechanism in several neuropsychiatric disorders.


Asunto(s)
Corteza Cerebral/citología , Ácido Glutámico/metabolismo , Hipocampo/citología , Canales de Potasio Calcio-Activados/metabolismo , Terminales Presinápticos/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Animales Recién Nacidos , Área Bajo la Curva , Ácido Aspártico/metabolismo , Calcio/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Dopamina/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Microscopía Confocal , Norepinefrina/metabolismo , Péptidos/farmacología , Canales de Potasio Calcio-Activados/deficiencia , Ratas , Ratas Wistar , Sinaptofisina/metabolismo , Sinaptosomas/metabolismo , Transfección/métodos , Tritio/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
20.
J Pharmacol Exp Ther ; 332(3): 811-20, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20040580

RESUMEN

Changes in the expression of potassium channels regulate skeletal muscle development. The purpose of this study was to investigate the expression profile and pharmacological role of K(v)7 voltage-gated potassium channels in skeletal muscle differentiation, proliferation, and survival after myotoxic insults. Transcripts for all K(v)7 genes (K(v)7.1-K(v)7.5) were detected by polymerase chain reaction (PCR) and/or real-time PCR in murine C(2)C(12) myoblasts; K(v)7.1, K(v)7.3, and K(v)7.4 transcripts were up-regulated after myotube formation. Western blot experiments confirmed K(v)7.2, K(v)7.3, and K(v)7.4 subunit expression, and the up-regulation of K(v)7.3 and K(v)7.4 subunits during in vitro differentiation. In adult skeletal muscles from mice and humans, K(v)7.2 and K(v)7.3 immunoreactivity was mainly localized at the level of intracellular striations positioned between ankyrinG-positive triads, whereas that of K(v)7.4 subunits was largely restricted to the sarcolemmal membrane. In C(2)C(12) cells, retigabine (10 microM), a specific activator of neuronally expressed K(v)7.2 to K(v)7.5 subunits, reduced proliferation, accelerated myogenin expression, and inhibited the myotoxic effect of mevastatin (IC(50) approximately 7 microM); all these effects of retigabine were prevented by the K(v)7 channel blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone (XE-991) (10 muM). These data collectively highlight neural K(v)7 channels as significant pharmacological targets to regulate skeletal muscle proliferation, differentiation, and myotoxic effects of drugs.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas/toxicidad , Canales de Potasio KCNQ/biosíntesis , Lovastatina/análogos & derivados , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Adulto , Animales , Antracenos/farmacología , Carbamatos/farmacología , Diferenciación Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Cricetinae , Cricetulus , Humanos , Técnicas In Vitro , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/genética , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/biosíntesis , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ2/antagonistas & inhibidores , Canal de Potasio KCNQ2/biosíntesis , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/antagonistas & inhibidores , Canal de Potasio KCNQ3/biosíntesis , Canal de Potasio KCNQ3/genética , Lovastatina/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/citología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/metabolismo , Fenilendiaminas/farmacología , Subunidades de Proteína/biosíntesis , ARN Mensajero/biosíntesis , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA