Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(2): 027201, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867446

RESUMEN

All-electrical writing and reading of spin states attract considerable attention for their promising applications in energy-efficient spintronics devices. Here we show, based on rigorous first-principles calculations, that the spin properties can be manipulated and detected in molecular spinterfaces, where an iron tetraphenyl porphyrin (FeTPP) molecule is deposited on boron-substituted graphene (BG). Notably, a reversible spin switching between the S=1 and S=3/2 states is achieved by a gate electrode. We can trace the origin to a strong hybridization between the Fe-d_{z^{2}} and B-p_{z} orbitals. Combining density functional theory with nonequilibrium Green's function formalism, we propose an experimentally feasible three-terminal setup to probe the spin state. Furthermore, we show how the in-plane quantum transport for the BG, which is non-spin polarized, can be modified by FeTPP, yielding a significant transport spin polarization near the Fermi energy (>10% for typical coverage). Our work paves the way to realize all-electrical spintronics devices using molecular spinterfaces.

2.
Phys Rev Lett ; 124(21): 215901, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32530683

RESUMEN

An accurate prediction of atomic diffusion in Fe alloys is challenging due to thermal magnetic excitations and magnetic transitions. We propose an efficient approach to address these properties via a Monte Carlo simulation, using ab initio-based effective interaction models. The temperature evolution of self- and Cu diffusion coefficients in α-iron are successfully predicted, particularly the diffusion acceleration around the Curie point, which requires a quantum treatment of spins. We point out a dominance of magnetic disorder over chemical effects on diffusion in the very dilute systems.

3.
Chemistry ; 20(42): 13566-75, 2014 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-25225027

RESUMEN

The synthesis of a series of Ni(II) -salen-based complexes with the general formula of [Ni(H2 L)] (H4 L=R(2) -N,N'-bis[R(1) -5-(4'-benzoic acid)salicylidene]; H4 L1: R(2) =2,3-diamino-2,3-dimethylbutane and R(1) =H; H4 L2: R(2) =1,2-diaminoethane and R(1) =tert-butyl and H4 L3: R(2) =1,2-diaminobenzene and R(1) =tert-butyl) is presented. Their electronic structure and self-assembly was studied. The organic ligands of the salen complexes are functionalized with peripheral carboxylic groups for driving molecular self-assembly through hydrogen bonding. In addition, other substituents, that is, tert-butyl and diamine bridges (2,3-diamino-2,3-dimethylbutane, 1,2-diaminobenzene or 1,2-diaminoethane), were used to tune the two-dimensional (2D) packing of these building blocks. Density functional theory (DFT) calculations reveal that the spatial distribution of the LUMOs is affected by these substituents, in contrast with the HOMOs, which remain unchanged. Scanning tunneling microscopy (STM) shows that the three complexes self-assemble into three different 2D nanoarchitectures at the solid-liquid interface on graphite. Two structures are porous and one is close-packed. These structures are stabilized by hydrogen bonds in one dimension, while the 2D interaction is governed by van der Waals forces and is tuned by the nature of the substituents, as confirmed by theoretical calculations. As expected, the total dipolar moment is minimized.

4.
J Phys Chem Lett ; 14(35): 7814-7823, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37623823

RESUMEN

The neutral spin crossover complex Fe(neoim)2, neoim being the deprotonated form of the ionogenic ligand 2-(1H-imidazol-2-yl)-9-methyl-1,10-phenanthroline (neoimH), is investigated on the (111) surfaces of Au and Ag using scanning tunneling microscopy and density functional theory calculations. The complex sublimates and adsorbs intact on Ag(111), where it exhibits an electron-induced spin crossover. However, it fragments on Au. According to density functional theory calculations, the adsorbed complex is drastically distorted by the interactions with the substrates, in particular by van der Waals forces. Dispersion interaction is also decisive for the relative stabilities of the low- and high-spin states of the adsorbed complex. The unexpected instability of the complex on the gold substrate is attributed to enhanced covalent bonding of the fragments to the substrate.

5.
J Phys Chem Lett ; 13(32): 7514-7520, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35944010

RESUMEN

We demonstrate, based on low-temperature scanning tunneling microscopy (STM) and spectroscopy, a pronounced negative differential resistance (NDR) in spin-crossover (SCO) molecular devices, where a FeII SCO molecule is deposited on surfaces. The STM measurements reveal that the NDR is robust with respect to substrate materials, temperature, and the number of SCO layers. This indicates that the NDR is intrinsically related to the electronic structure of the SCO molecule. Experimental results are supported by density functional theory (DFT) with nonequilibrium Green's function (NEGF) calculations and a generic theoretical model. While the DFT+NEGF calculations reproduce NDR for a special atomically sharp STM tip, the effect is attributed to the energy-dependent tip density of states rather than the molecule itself. We, therefore, propose a Coulomb blockade model involving three molecular orbitals with very different spatial localization as suggested by the molecular electronic structure.

6.
J Phys Chem Lett ; 11(21): 9329-9335, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33089985

RESUMEN

The interaction of molecules with surfaces plays a crucial role in the electronic and chemical properties of supported molecules and needs a comprehensive description of interfacial effects. Here, we unveil the effect of the substrate on the electronic configuration of iron porphyrin molecules on Au(111) and graphene, and we provide a physical picture of the molecule-surface interaction. We show that the frontier orbitals derive from different electronic states depending on the substrate. The origin of this difference comes from molecule-substrate orbital selective coupling caused by reduced symmetry and interaction with the substrate. The weak interaction on graphene keeps a ground state configuration close to the gas phase, while the stronger interaction on gold stabilizes another electronic solution. Our findings reveal the origin of the energy redistribution of molecular states for noncovalently bonded molecules on surfaces.

7.
J Phys Chem Lett ; 10(14): 4103-4109, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31265299

RESUMEN

Spin-crossover molecules are very appealing for use in multifunctional spintronic devices because of their ability to switch between high-spin and low-spin states with external stimuli such as voltage and light. In actual devices, the molecules are deposited on a substrate, which can modify their properties. However, surprisingly little is known about such molecule-substrate effects. Here we show for the first time, by grazing incidence X-ray diffraction, that an FeII spin-crossover molecular layer displays a well-defined epitaxial relationship with a metal substrate. Then we show, by both density functional calculations and a mechanoelastic model, that the resulting epitaxial strain and the related internal pressure can induce a partial spin conversion at low temperatures, which has indeed been observed experimentally. Our results emphasize the importance of substrate-induced spin state transitions and raise the possibility of exploiting them.

8.
Nat Commun ; 7: 12212, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27425776

RESUMEN

Spin cross-over molecules show the unique ability to switch between two spin states when submitted to external stimuli such as temperature, light or voltage. If controlled at the molecular scale, such switches would be of great interest for the development of genuine molecular devices in spintronics, sensing and for nanomechanics. Unfortunately, up to now, little is known on the behaviour of spin cross-over molecules organized in two dimensions and their ability to show cooperative transformation. Here we demonstrate that a combination of scanning tunnelling microscopy measurements and ab initio calculations allows discriminating unambiguously between both states by local vibrational spectroscopy. We also show that a single layer of spin cross-over molecules in contact with a metallic surface displays light-induced collective processes between two ordered mixed spin-state phases with two distinct timescale dynamics. These results open a way to molecular scale control of two-dimensional spin cross-over layers.

9.
J Phys Condens Matter ; 24(40): 406004, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22987868

RESUMEN

An efficient tight-binding model including magnetism and spin-orbit interactions is extended to metallic alloys. The tight-binding parameters are determined from a fit to bulk ab initio calculations of each metal and rules are given to obtain the heteroatomic parameters. The spin and orbital magnetic moments as well as the magneto-crystalline anisotropy are derived. We apply this method to bulk FePt L1(0) and the results are compared with success to ab initio results where available. Finally this model is applied to a set of FePt L1(0) clusters and physical trends are derived.


Asunto(s)
Metales/química , Modelos Químicos , Aleaciones/química , Simulación por Computador , Conductividad Eléctrica , Campos Magnéticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA