Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Total Environ ; 901: 166640, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37647965

RESUMEN

Rivers are key pathways for the transfer of microplastics (MP) to marine environments. However, there are considerable uncertainties about the amount of microplastics transported by rivers to the ocean; this results in inaccuracies in our understanding of microplastic quantity and transport by freshwater systems. Additionally, it has been suggested that rivers may represent long-term sinks, with microplastics accumulating in sediment due to their high density or other biological, chemical, and physical factors. The atmosphere is also an important pathway by which airborne microplastics may enter aquatic habitats. Here, we compare for first time microplastics type and concentration in these key environmental mediums (air, water and sediment) along a major river (Ganges), from sea to source to understand 1) the abundance, 2) the spatial distribution, and 3) characteristics. Mean microplastic abundance settling from the atmosphere was 41.12 MP m2 day-1; while concentrations in sediment were 57.00 MP kg-1 and in water were 0.05 MP L-1. Across all sites and environmental mediums, rayon (synthetically altered cellulose) was the dominant polymer (54-82 %), followed by acrylic (6-23 %) and polyester (9-17 %). Fibres were the dominant shape (95-99 %) and blue was the most common colour (48-79 %). Across water and sediment environmental mediums, the number of microplastics per sample increased from the source of the Ganges to the sea. Additionally, higher population densities correlated with increased microplastic abundance for air and water samples. We suggest that clothing is likely to be the prominent source of microplastics to the river system, influenced by atmospheric deposition, wastewater and direct input (e.g. handwashing of clothes in the Ganges), especially in high density population areas. However, we suggest that subsequent microplastic release to the marine environment is strongly influenced by polymer type and shape, with a large proportion of denser microplastics settling in sediment prior to the river discharging to the ocean.

2.
Sci Total Environ ; 804: 150155, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34520921

RESUMEN

While land-based sources of plastic pollution have gained increasing attention in recent years, ocean-based sources have been less well studied. The aim of this study was to compare a variety of ropes (differing in age, wear surface and material) to quantify and characterise the production of microplastic during use. This was achieved by simulating, in laboratory and field experiments, rope hauling activity which is typically performed on board maritime vessels, such as fishing boats. Microplastic generation was quantified by collecting fragments that were released as a consequence of abrasion. Notably, we show that microplastic fragments generated from rope wear during use were characteristically irregular in shape, rather than fibrous such as those assigned to synthetic rope by previous studies. Therefore, we suggest that some of the plastic fragments found in the marine environment may have been falsely attributed to land-based sources but have in fact arisen form the abrasion of rope. Our research found that new and one-year old polypropylene rope released significantly fewer microplastic fragments (14 ± 3 and 22 ± 5) and less microplastic mass (11 ± 2 and 12 ± 3 µg) per metre hauled compared to ropes of two (720 ± 51, 247 ± 18 µg) or ten (767 ± 55, 1052 ± 75 µg) years of age. We show that a substantial amount of microplastic contamination is likely to directly enter the marine environment due to in situ rope abrasion and that rope age is an important factor influencing microplastic release. Our research suggests the need for standards on rope maintenance, replacement, and recycling along with innovation in synthetic rope design with the aim to reduce microplastic emission.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Contaminación Ambiental , Industrias , Plásticos , Polipropilenos , Contaminantes Químicos del Agua/análisis
3.
Environ Pollut ; 274: 116348, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33423832

RESUMEN

Microplastics (plastic < 5 mm in size) are now known to contaminate riverine systems but understanding about how their concentrations vary spatially and temporally is limited. This information is critical to help identify key sources and pathways of microplastic and develop management interventions. This study provides the first investigation of microplastic abundance, characteristics and temporal variation along the Ganges river; one of the most important catchments of South Asia. From 10 sites along a 2575 km stretch of the river, 20 water samples (3600 L in total) were filtered (60 samples each from pre- and post-monsoon season). Overall, 140 microplastic particles were identified, with higher concentrations found in the pre-monsoon (71.6%) than in post-monsoon (61.6%) samples. The majority of microplastics were fibres (91%) and the remaining were fragments (9%). We estimate that the Ganges, with the combined flows of the Brahmaputra and Meghna rivers (GBM), could release up to 1-3 billion (109) microplastics into the Bay of Bengal (north-eastern portion of the Indian Ocean) every day. This research provides the first step in understanding microplastic contamination in the Ganges and its contribution to the oceanic microplastic load.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Asia , Monitoreo del Ambiente , Océano Índico , Plásticos , Ríos , Agua , Contaminantes Químicos del Agua/análisis
4.
Sci Total Environ ; 738: 140412, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-32682545

RESUMEN

The washing of synthetic clothes is considered to be a substantial source of microplastic to the environment. Therefore, various devices have been designed to capture microfibres released from clothing during the washing cycle. In this study, we compared 6 different devices which varied from prototypes to commercially available products. These were designed to either be placed inside the drum during the washing cycle or fitted externally to filter the effluent wastewater discharge. The aim of this study was to examine the efficacy of these devices at mitigating microfibre release from clothing during washing or at capturing any microfibres released in the wastewater. When compared to the amount of microfibres entering the wastewater without any device (control), the XFiltra filter was the most successful device. This device captured microfibres reducing their release to wastewater by around 78%. The Guppyfriend bag was the second most successful device, reducing microfibre release to wastewater by around 54%; it appeared to mainly work by reducing microfibre shedding from the clothing during the washing cycle. Despite some potentially promising results it is important to recognise that fibres are also released when garments are worn in everyday use. Researchers and industry need to continue to collaborate to better understand the best intervention points to reduce microfibre shedding, by considering both product design and fibre capture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA