Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 47(1): 122-32, 2012 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-22658415

RESUMEN

Prolonged deficits in neural input activate pathological muscle remodeling, leading to atrophy. In denervated muscle, activation of the atrophy program requires HDAC4, a potent repressor of the master muscle transcription factor MEF2. However, the signaling mechanism that connects HDAC4, a protein deacetylase, to the atrophy machinery remains unknown. Here, we identify the AP1 transcription factor as a critical target of HDAC4 in neurogenic muscle atrophy. In denervated muscle, HDAC4 activates AP1-dependent transcription, whereas AP1 inactivation recapitulates HDAC4 deficiency and blunts the muscle atrophy program. We show that HDAC4 activates AP1 independently of its canonical transcriptional repressor activity. Surprisingly, HDAC4 stimulates AP1 activity by activating the MAP kinase cascade. We present evidence that HDAC4 binds and promotes the deacetylation and activation of a key MAP3 kinase, MEKK2. Our findings establish an HDAC4-MAPK-AP1 signaling axis essential for neurogenic muscle atrophy and uncover a direct crosstalk between acetylation- and phosphorylation-dependent signaling cascades.


Asunto(s)
Histona Desacetilasas/metabolismo , MAP Quinasa Quinasa Quinasa 2/metabolismo , Músculo Esquelético/metabolismo , Factor de Transcripción AP-1/metabolismo , Acetilación , Animales , Western Blotting , Línea Celular , Células HEK293 , Histona Desacetilasas/genética , Humanos , MAP Quinasa Quinasa Quinasa 2/genética , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Datos de Secuencia Molecular , Desnervación Muscular , Músculo Esquelético/inervación , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Fosforilación , Unión Proteica , Interferencia de ARN , Factor de Transcripción AP-1/genética
2.
Am J Physiol Gastrointest Liver Physiol ; 309(8): G635-47, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26294671

RESUMEN

Divalent metal-ion transporter-1 (DMT1) is a widely expressed iron-preferring membrane-transport protein that serves a critical role in erythroid iron utilization. We have investigated its role in intestinal metal absorption by studying a mouse model lacking intestinal DMT1 (i.e., DMT1(int/int)). DMT1(int/int) mice exhibited a profound hypochromic-microcytic anemia, splenomegaly, and cardiomegaly. That the anemia was due to iron deficiency was demonstrated by the following observations in DMT1(int/int) mice: 1) blood iron and tissue nonheme-iron stores were depleted; 2) mRNA expression of liver hepcidin (Hamp1) was depressed; and 3) intraperitoneal iron injection corrected the anemia, and reversed the changes in blood iron, nonheme-iron stores, and hepcidin expression levels. We observed decreased total iron content in multiple tissues from DMT1(int/int) mice compared with DMT1(+/+) mice but no meaningful change in copper, manganese, or zinc. DMT1(int/int) mice absorbed (64)Cu and (54)Mn from an intragastric dose to the same extent as did DMT1(+/+) mice but the absorption of (59)Fe was virtually abolished in DMT1(int/int) mice. This study reveals a critical function for DMT1 in intestinal nonheme-iron absorption for normal growth and development. Further, this work demonstrates that intestinal DMT1 is not required for the intestinal transport of copper, manganese, or zinc.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Absorción Intestinal/fisiología , Hierro/metabolismo , Manganeso/metabolismo , Anemia Hipocrómica/genética , Anemia Hipocrómica/patología , Animales , Proteínas de Transporte de Catión/genética , Transportador de Cobre 1 , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Ratones , Ratones Noqueados , Zinc/metabolismo
3.
Elife ; 112022 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-35758636

RESUMEN

Increased intracellular iron spurs mitochondrial biogenesis and respiration to satisfy high-energy demand during osteoclast differentiation and bone-resorbing activities. Transferrin receptor 1 (Tfr1) mediates cellular iron uptake through endocytosis of iron-loaded transferrin, and its expression increases during osteoclast differentiation. Nonetheless, the precise functions of Tfr1 and Tfr1-mediated iron uptake in osteoclast biology and skeletal homeostasis remain incompletely understood. To investigate the role of Tfr1 in osteoclast lineage cells in vivo and in vitro, we crossed Tfrc (encoding Tfr1)-floxed mice with Lyz2 (LysM)-Cre and Cathepsin K (Ctsk)-Cre mice to generate Tfrc conditional knockout mice in myeloid osteoclast precursors (Tfr1ΔLysM) or differentiated osteoclasts (Tfr1ΔCtsk), respectively. Skeletal phenotyping by µCT and histology unveiled a significant increase in trabecular bone mass with normal osteoclast number in long bones of 10-week-old young and 6-month-old adult female but not male Tfr1ΔLysM mice. Although high trabecular bone volume in long bones was observed in both male and female Tfr1ΔCtsk mice, this phenotype was more pronounced in female knockout mice. Consistent with this gender-dependent phenomena, estrogen deficiency induced by ovariectomy decreased trabecular bone mass in Tfr1ΔLysM mice. Mechanistically, disruption of Tfr1 expression attenuated mitochondrial metabolism and cytoskeletal organization in mature osteoclasts in vitro by attenuating mitochondrial respiration and activation of the Src-Rac1-WAVE regulatory complex axis, respectively, leading to decreased bone resorption with little impact on osteoclast differentiation. These results indicate that Tfr1-mediated iron uptake is specifically required for osteoclast function and is indispensable for bone remodeling in a gender-dependent manner.


Asunto(s)
Resorción Ósea , Hierro , Osteoclastos , Receptores de Transferrina , Animales , Resorción Ósea/patología , Citoesqueleto/metabolismo , Femenino , Hierro/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Osteoclastos/metabolismo , Receptores de Transferrina/genética
4.
J Clin Invest ; 118(11): 3598-608, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18846255

RESUMEN

The composition of skeletal muscle, in terms of the relative number of slow- and fast-twitch fibers, is tightly regulated to enable an organism to respond and adapt to changing physical demands. The phosphatase calcineurin and its downstream targets, transcription factors of the nuclear factor of activated T cells (NFAT) family, play a critical role in this process by promoting the formation of slow-twitch, oxidative fibers. Calcineurin binds to calsarcins, a family of striated muscle-specific proteins of the sarcomeric Z-disc. We show here that mice deficient in calsarcin-2, which is expressed exclusively by fast-twitch muscle and encoded by the myozenin 1 (Myoz1) gene, have substantially reduced body weight and fast-twitch muscle mass in the absence of an overt myopathic phenotype. Additionally, Myoz1 KO mice displayed markedly improved performance and enhanced running distances in exercise studies. Analysis of fiber type composition of calsarcin-2-deficient skeletal muscles showed a switch toward slow-twitch, oxidative fibers. Reporter assays in cultured myoblasts indicated an inhibitory role for calsarcin-2 on calcineurin, and Myoz1 KO mice exhibited both an excess of NFAT activity and an increase in expression of regulator of calcineurin 1-4 (RCAN1-4), indicating enhanced calcineurin signaling in vivo. Taken together, these results suggest that calsarcin-2 modulates exercise performance in vivo through regulation of calcineurin/NFAT activity and subsequent alteration of the fiber type composition of skeletal muscle.


Asunto(s)
Calcineurina/metabolismo , Proteínas Musculares/deficiencia , Factores de Transcripción NFATC/metabolismo , Condicionamiento Físico Animal , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/ultraestructura , Línea Celular , Genes Reporteros , Ratones , Ratones Noqueados , Proteínas de Microfilamentos , Modelos Biológicos , Fibras Musculares de Contracción Lenta/fisiología , Proteínas Musculares/genética , Proteínas Musculares/ultraestructura , Mioblastos/citología , Mioblastos/metabolismo
5.
Nat Med ; 10(12): 1336-43, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15543153

RESUMEN

Signaling by the calcium-dependent phosphatase calcineurin profoundly influences the growth and gene expression of cardiac and skeletal muscle. Calcineurin binds to calsarcins, a family of muscle-specific proteins of the sarcomeric Z-disc, a focal point in the pathogenesis of human cardiomyopathies. We show that calsarcin-1 negatively modulates the functions of calcineurin, such that calcineurin signaling was enhanced in striated muscles of mice that do not express calsarcin-1. As a consequence of inappropriate calcineurin activation, mice with a null mutation in calsarcin-1 showed an excess of slow skeletal muscle fibers. The absence of calsarcin-1 also activated a hypertrophic gene program, despite the absence of hypertrophy, and enhanced the cardiac growth response to pressure overload. In contrast, cardiac adaptation to other hypertrophic stimuli, such as chronic catecholamine stimulation or exercise, was not affected. These findings show important roles for calsarcins as modulators of calcineurin signaling and the transmission of a specific subset of stress signals leading to cardiac remodeling in vivo.


Asunto(s)
Calcineurina/metabolismo , Cardiomiopatías/metabolismo , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Proteínas Musculares/deficiencia , Transducción de Señal , Agonistas Adrenérgicos beta/farmacología , Animales , Fenómenos Biomecánicos , Inhibidores de la Calcineurina , Proteínas Portadoras/genética , Cartilla de ADN , Proteínas de Unión al ADN , Ecocardiografía , Corazón/efectos de los fármacos , Corazón/crecimiento & desarrollo , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular , Isoproterenol/farmacología , Ratones , Ratones Transgénicos , Microscopía Electrónica , Proteínas Musculares/genética , Proteínas Musculares/farmacología , Músculo Esquelético/metabolismo , Mutación/genética , Miocardio/metabolismo , Miocardio/ultraestructura , Condicionamiento Físico Animal , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sarcómeros/metabolismo , Estrés Fisiológico/metabolismo , beta-Galactosidasa
6.
FASEB J ; 23(1): 99-106, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18780762

RESUMEN

Histone deacetylase 4 (HDAC4) binds and inhibits activation of the critical muscle transcription factor myocyte enhancer factor-2 (MEF2). However, the physiological significance of the HDAC4-MEF2 complex in skeletal muscle has not been established. Here we show that in skeletal muscle, HDAC4 is a critical modulator of MEF2-dependent structural and contractile gene expression in response to neural activity. We present evidence that loss of neural input leads to concomitant nuclear accumulation of HDAC4 and transcriptional reduction of MEF2-regulated gene expression. Cell-based assays show that HDAC4 represses structural gene expression via direct binding to AT-rich MEF2 response elements. Notably, using both surgical denervation and the neuromuscular disease amyotrophic lateral sclerosis (ALS) model, we found that elevated levels of HDAC4 are required for efficient repression of MEF2-dependent structural gene expression, indicating a link between the pathological induction of HDAC4 and subsequent MEF2 target gene suppression. Supporting this supposition, we show that ectopic expression of HDAC4 in muscle fibers is sufficient to induce muscle damage in mice. Our study identifies HDAC4 as an activity-dependent regulator of MEF2 function and suggests that activation of HDAC4 in response to chronically reduced neural activity suppresses MEF2-dependent gene expression and contributes to progressive muscle dysfunction observed in neuromuscular diseases.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Histona Desacetilasas/metabolismo , Células Musculares/metabolismo , Factores Reguladores Miogénicos/metabolismo , Neuronas/fisiología , Proteínas Represoras/metabolismo , Animales , Línea Celular , Histona Desacetilasas/genética , Factores de Transcripción MEF2 , Ratones , Ratones Endogámicos C57BL , Mutación , Proteínas Represoras/genética
8.
Nat Cell Biol ; 22(1): 49-59, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31907410

RESUMEN

Osteoclasts are multinucleated cells of the monocyte/macrophage lineage that degrade bone. Here, we used lineage tracing studies-labelling cells expressing Cx3cr1, Csf1r or Flt3-to identify the precursors of osteoclasts in mice. We identified an erythromyeloid progenitor (EMP)-derived osteoclast precursor population. Yolk-sac macrophages of EMP origin produced neonatal osteoclasts that can create a space for postnatal bone marrow haematopoiesis. Furthermore, EMPs gave rise to long-lasting osteoclast precursors that contributed to postnatal bone remodelling in both physiological and pathological settings. Our single-cell RNA-sequencing data showed that EMP-derived osteoclast precursors arose independently of the haematopoietic stem cell (HSC) lineage and the data from fate tracking of EMP and HSC lineages indicated the possibility of cell-cell fusion between these two lineages. Cx3cr1+ yolk-sac macrophage descendants resided in the adult spleen, and parabiosis experiments showed that these cells migrated through the bloodstream to the remodelled bone after injury.


Asunto(s)
Hematopoyesis/fisiología , Homeostasis/fisiología , Osteoclastos/metabolismo , Saco Vitelino/metabolismo , Animales , Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Células Madre Hematopoyéticas/metabolismo , Macrófagos/metabolismo , Ratones
9.
Sci Rep ; 9(1): 9005, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227757

RESUMEN

ß-catenin protein needs to be precisely regulated for effective fracture repair. The pace of fracture healing slows with age, associated with a transient increase in ß-catenin during the initial phase of the repair process. Here we examined the ability of pharmacologic agents that target ß-catenin to improve the quality of fracture repair in old mice. 20 month old mice were treated with Nefopam or the tankyrase inhibitor XAV939 after a tibia fracture. Fractures were examined 21 days later by micro-CT and histology, and 28 days later using mechanical testing. Daily treatment with Nefopam for three or seven days but not ten days improved the amount of bone present at the fracture site, inhibited ß-catenin protein level, and increased colony forming units osteoblastic from bone marrow cells. At 28 days, treatment increased the work to fracture of the injured tibia. XAV939 had a more modest effect on ß-catenin protein, colony forming units osteoblastic, and the amount of bone at the fracture site. This data supports the notion that high levels of ß-catenin in the early phase of fracture healing in old animals slows osteogenesis, and suggests a pharmacologic approach that targets ß-catenin to improve fracture repair in the elderly.


Asunto(s)
Curación de Fractura/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Nefopam/farmacología , Fracturas de la Tibia/metabolismo , beta Catenina/metabolismo , Analgésicos no Narcóticos/farmacología , Animales , Masculino , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteogénesis/efectos de los fármacos , Células Madre/efectos de los fármacos , Tanquirasas/antagonistas & inhibidores , Tanquirasas/metabolismo , Tibia/efectos de los fármacos , Tibia/lesiones , Tibia/metabolismo , Fracturas de la Tibia/fisiopatología , Factores de Tiempo
10.
Mol Cell Biol ; 25(8): 3173-81, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15798203

RESUMEN

Myocardin and the myocardin-related transcription factors (MRTFs) MRTF-A and MRTF-B are coactivators for serum response factor (SRF), which regulates genes involved in cell proliferation, migration, cytoskeletal dynamics, and myogenesis. MRTF-A has been shown to translocate to the nucleus and activate SRF in response to Rho signaling and actin polymerization. Previously, we described a muscle-specific actin-binding protein named striated muscle activator of Rho signaling (STARS) that also activates SRF through a Rho-dependent mechanism. Here we show that STARS activates SRF by inducing the nuclear translocation of MRTFs. The STARS-dependent nuclear import of MRTFs requires RhoA and actin polymerization, and the actin-binding domain of STARS is necessary and sufficient for this activity. A knockdown of endogenous STARS expression by using small interfering RNA significantly reduced SRF activity in differentiated C2C12 skeletal muscle cells and cardiac myocytes. The ability of STARS to promote the nuclear localization of MRTFs and SRF-mediated transcription provides a potential muscle-specific mechanism for linking changes in actin dynamics and sarcomere structure with striated muscle gene expression.


Asunto(s)
Actinas/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Microfilamentos/fisiología , Desarrollo de Músculos/fisiología , Proteínas de Fusión Oncogénica/metabolismo , Factor de Respuesta Sérica/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Línea Celular , Núcleo Celular/química , Proteínas de Unión al ADN/análisis , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/metabolismo , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Fusión Oncogénica/análisis , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción/análisis , Factores de Transcripción/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/metabolismo
11.
Nat Commun ; 9(1): 5191, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518764

RESUMEN

The pace of repair declines with age and, while exposure to a young circulation can rejuvenate fracture repair, the cell types and factors responsible for rejuvenation are unknown. Here we report that young macrophage cells produce factors that promote osteoblast differentiation of old bone marrow stromal cells. Heterochronic parabiosis exploiting young mice in which macrophages can be depleted and fractionated bone marrow transplantation experiments show that young macrophages rejuvenate fracture repair, and old macrophage cells slow healing in young mice. Proteomic analysis of the secretomes identify differential proteins secreted between old and young macrophages, such as low-density lipoprotein receptor-related protein 1 (Lrp1). Lrp1 is produced by young cells, and depleting Lrp1 abrogates the ability to rejuvenate fracture repair, while treating old mice with recombinant Lrp1 improves fracture healing. Macrophages and proteins they secrete orchestrate the fracture repair process, and young cells produce proteins that rejuvenate fracture repair in mice.


Asunto(s)
Curación de Fractura , Fracturas Óseas/fisiopatología , Macrófagos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea , Femenino , Fracturas Óseas/genética , Fracturas Óseas/metabolismo , Fracturas Óseas/terapia , Humanos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis , Receptores de LDL/genética , Rejuvenecimiento , Células del Estroma/citología , Células del Estroma/metabolismo , Células del Estroma/trasplante , Proteínas Supresoras de Tumor/genética
12.
Cell Rep ; 13(3): 533-545, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26456827

RESUMEN

Both iron overload and iron deficiency have been associated with cardiomyopathy and heart failure, but cardiac iron utilization is incompletely understood. We hypothesized that the transferrin receptor (Tfr1) might play a role in cardiac iron uptake and used gene targeting to examine the role of Tfr1 in vivo. Surprisingly, we found that decreased iron, due to inactivation of Tfr1, was associated with severe cardiac consequences. Mice lacking Tfr1 in the heart died in the second week of life and had cardiomegaly, poor cardiac function, failure of mitochondrial respiration, and ineffective mitophagy. The phenotype could only be rescued by aggressive iron therapy, but it was ameliorated by administration of nicotinamide riboside, an NAD precursor. Our findings underscore the importance of both Tfr1 and iron in the heart, and may inform therapy for patients with heart failure.


Asunto(s)
Cardiomiopatías/genética , Miocardio/metabolismo , Receptores de Transferrina/genética , Animales , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/patología , Respiración de la Célula , Hierro/metabolismo , Ratones , Mitofagia , Miocardio/patología , Niacinamida/análogos & derivados , Niacinamida/uso terapéutico , Compuestos de Piridinio , Receptores de Transferrina/metabolismo
13.
EBioMedicine ; 2(11): 1705-17, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26870796

RESUMEN

Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid ß oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders.


Asunto(s)
Músculos/metabolismo , Receptores de Transferrina/deficiencia , Animales , Análisis por Conglomerados , Regulación de la Expresión Génica , Genes Letales , Deficiencias de Hierro , Trastornos del Metabolismo del Hierro/genética , Trastornos del Metabolismo del Hierro/metabolismo , Trastornos del Metabolismo del Hierro/patología , Hígado/metabolismo , Metaboloma , Metabolómica/métodos , Ratones , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculos/patología , Fosforilación Oxidativa , Fenotipo , Receptores de Transferrina/genética
14.
Cell Metab ; 17(3): 319-28, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23473029

RESUMEN

Transition metals are frequently used as cofactors for enzymes and oxygen-carrying proteins that take advantage of their propensity to gain and lose single electrons. Metals are particularly important in mitochondria, where they play essential roles in the production of ATP and detoxification of reactive oxygen species. At the same time, transition metals (particularly Fe and Cu) can promote the formation of harmful radicals, necessitating meticulous control of metal concentration and subcellular compartmentalization. We summarize our current understanding of Fe and Cu in mammalian mitochondrial biology and discuss human diseases associated with aberrations in mitochondrial metal homeostasis.


Asunto(s)
Hemo/biosíntesis , Homeostasis/fisiología , Proteínas Hierro-Azufre/biosíntesis , Hierro/metabolismo , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/fisiopatología , Modelos Biológicos , Humanos
15.
Cancer Res ; 68(3): 693-9, 2008 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18245468

RESUMEN

TBX3 is a transcription factor of the T-box gene family. Mutations in the TBX3 gene can cause hypoplastic or absent mammary glands. Previous studies have shown that TBX3 might be associated with breast cancer. Here, we show that TBX3 is overexpressed in malignant cells of primary breast cancer tissues by immunohistochemistry. TBX3 interacts with histone deacetylases (HDAC) 1, 2, 3, and 5. TBX3 interacts with HDAC1, 2, and 3 via two distinct binding sites. However, deletion of the repression domain (amino acids 566-624) of TBX3 completely abolishes its interaction with HDAC5. Endogenous TBX3 and HDACs interaction and colocalization are found in a breast cancer cell line by coimmunoprecipitation and immunofluorescence, respectively. The functional significance of the interaction between TBX3 and HDAC is also tested in a p14(ARF)-luciferase reporter system. Results indicate that TBX3 represses expression of p14(ARF) tumor suppressor and that a HDAC inhibitor is able to reverse the TBX3 repressive function in a dosage-dependent manner. This study suggests that TBX3 may function by recruiting HDACs to the T-box binding site in the promoter region. TBX3 repression to its targets is dependent on HDAC activity. TBX3 may serve as a biomarker for breast cancer and have significant applications in both breast cancer diagnosis and treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Histona Desacetilasas/metabolismo , Proteínas de Dominio T Box/biosíntesis , Proteína p14ARF Supresora de Tumor/biosíntesis , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Femenino , Humanos , Inmunohistoquímica , Isoenzimas/metabolismo , Persona de Mediana Edad , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas de Dominio T Box/genética , Transfección , Proteína p14ARF Supresora de Tumor/antagonistas & inhibidores , Proteína p14ARF Supresora de Tumor/genética , Regulación hacia Arriba
16.
Cancer Res ; 68(18): 7561-9, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18794144

RESUMEN

Histone deacetylase inhibitors (HDACI) are promising antitumor agents. Although transcriptional deregulation is thought to be the main mechanism underlying their therapeutic effects, the exact mechanism and targets by which HDACIs achieve their antitumor effects remain poorly understood. It is not known whether any of the HDAC members support robust tumor growth. In this report, we show that HDAC6, a cytoplasmic-localized and cytoskeleton-associated deacetylase, is required for efficient oncogenic transformation and tumor formation. We found that HDAC6 expression is induced upon oncogenic Ras transformation. Fibroblasts deficient in HDAC6 are more resistant to both oncogenic Ras and ErbB2-dependent transformation, indicating a critical role for HDAC6 in oncogene-induced transformation. Supporting this hypothesis, inactivation of HDAC6 in several cancer cell lines reduces anchorage-independent growth and the ability to form tumors in mice. The loss of anchorage-independent growth is associated with increased anoikis and defects in AKT and extracellular signal-regulated kinase activation upon loss of adhesion. Lastly, HDAC6-null mice are more resistant to chemical carcinogen-induced skin tumors. Our results provide the first experimental evidence that a specific HDAC member is required for efficient oncogenic transformation and indicate that HDAC6 is an important component underlying the antitumor effects of HDACIs.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Histona Desacetilasas/metabolismo , Animales , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/patología , Procesos de Crecimiento Celular/fisiología , Transformación Celular Neoplásica/patología , Citoplasma/enzimología , Femenino , Fibroblastos/enzimología , Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/genética , Humanos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/genética
17.
J Biol Chem ; 282(42): 30673-9, 2007 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17693409

RESUMEN

Patients with Down syndrome have characteristic heart valve lesions resulting from endocardial cushion defects. The Down syndrome critical region 1 (DSCR1) gene, identified at the conserved trisomic 21 region in those patients, encodes a calcineurin inhibitor that inactivates nuclear factor of activated T cells (NFATc) activity. Here, we identify a regulatory sequence in the promoter region of human DSCR1 that dictates specific expression of a reporter gene in the endocardium, defined by the temporal and spatial expression of Nfatc1 during heart valve development. Activation of this evolutionally conserved DSCR1 regulatory sequence requires calcineurin and NFATc1 signaling in the endocardium. NFATc1 proteins bind to the regulatory sequence and trigger its enhancer activity. NFATc1 is sufficient to induce the expression of Dscr1 in cells that normally have undetectable or minimal NFATc1 or DSCR1. Pharmacologic inhibition of calcineurin or genetic Nfatc1 null mutation in mice abolishes the endocardial activity of this DSCR1 enhancer. Furthermore, in mice lacking endocardial NFATc1, the endogenous Dscr1 expression is specifically inhibited in the endocardium but not in the myocardium. Thus, our studies indicate that the DSCR1 gene is a direct transcriptional target of NFATc1 proteins within the endocardium during a critical window of heart valve formation.


Asunto(s)
Endocardio/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Musculares/biosíntesis , Factores de Transcripción NFATC/metabolismo , Animales , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Unión al Calcio , Proteínas de Unión al ADN , Síndrome de Down/genética , Síndrome de Down/metabolismo , Síndrome de Down/patología , Endocardio/patología , Regulación del Desarrollo de la Expresión Génica/genética , Ventrículos Cardíacos/anomalías , Ventrículos Cardíacos/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Mutantes , Proteínas Musculares/genética , Factores de Transcripción NFATC/deficiencia , Factores de Transcripción NFATC/genética , Transducción de Señal/genética
18.
J Biol Chem ; 282(46): 33752-33759, 2007 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-17873280

RESUMEN

Neural activity actively regulates muscle gene expression. This regulation is crucial for specifying muscle functionality and synaptic protein expression. How neural activity is relayed into nuclei and connected to the muscle transcriptional machinery, however, is not known. Here we identify the histone deacetylase HDAC4 as the critical linker connecting neural activity to muscle transcription. We found that HDAC4 is normally concentrated at the neuromuscular junction (NMJ), where nerve innervates muscle. Remarkably, reduced neural input by surgical denervation or neuromuscular diseases dissociates HDAC4 from the NMJ and dramatically induces its expression, leading to robust HDAC4 nuclear accumulation. We present evidence that nuclear accumulated HDAC4 is responsible for the coordinated induction of synaptic genes upon denervation. Inactivation of HDAC4 prevents denervation-induced synaptic acetyl-choline receptor (nAChR) and MUSK transcription whereas forced expression of HDAC4 mimics denervation and activates ectopic nAChR transcription throughout myofibers. We determined that HDAC4 executes activity-dependent transcription by regulating the Dach2-myogenin transcriptional cascade where inhibition of the repressor Dach2 by HDAC4 permits the induction of the transcription factor myogenin, which in turn activates synaptic gene expression. Our findings establish HDAC4 as a neural activity-regulated deacetylase and a key signaling component that relays neural activity to the muscle transcriptional machinery.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasas/fisiología , Miogenina/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Receptores Nicotínicos/metabolismo , Transcripción Genética , Animales , Núcleo Celular/metabolismo , Proteínas de Unión al ADN , Histona Desacetilasas/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Músculo Esquelético/metabolismo , Unión Neuromuscular , Transducción de Señal , Factores de Tiempo , Factores de Transcripción
19.
J Biol Chem ; 282(11): 8393-403, 2007 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-17194709

RESUMEN

In addition to regulating cell motility, contractility, and cytokinesis, the actin cytoskeleton plays a critical role in the regulation of transcription and gene expression. We have previously identified a novel muscle-specific actin-binding protein, STARS (striated muscle activator of Rho signaling), which directly binds actin and stimulates serum-response factor (SRF)-dependent transcription. To further dissect the STARS/SRF pathway, we performed a yeast two-hybrid screen of a skeletal muscle cDNA library using STARS as bait, and we identified two novel members of the ABLIM protein family, ABLIM-2 and -3, as STARS-interacting proteins. ABLIM-1, which is expressed in retina, brain, and muscle tissue, has been postulated to function as a tumor suppressor. ABLIM-2 and -3 display distinct tissue-specific expression patterns with the highest expression levels in muscle and neuronal tissue. Moreover, these novel ABLIM proteins strongly bind F-actin, are localized to actin stress fibers, and synergistically enhance STARS-dependent activation of SRF. Conversely, knockdown of endogenous ABLIM expression utilizing small interfering RNA significantly blunted SRF-dependent transcription in C2C12 skeletal muscle cells. These findings suggest that the members of the novel ABLIM protein family may serve as a scaffold for signaling modules of the actin cytoskeleton and thereby modulate transcription.


Asunto(s)
Actinas/metabolismo , Proteínas de Microfilamentos/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Humanos , Proteínas con Dominio LIM , Ratones , Proteínas de Microfilamentos/química , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Unión Proteica , Retina/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA