Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 91: 61-87, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35363509

RESUMEN

Small molecule chemical probes are valuable tools for interrogating protein biological functions and relevance as a therapeutic target. Rigorous validation of chemical probe parameters such as cellular potency and selectivity is critical to unequivocally linking biological and phenotypic data resulting from treatment with a chemical probe to the function of a specific target protein. A variety of modern technologies are available to evaluate cellular potency and selectivity, target engagement, and functional response biomarkers of chemical probe compounds. Here, we review these technologies and the rationales behind using them for the characterization and validation of chemical probes. In addition, large-scale phenotypic characterization of chemical probes through chemical genetic screening is increasingly leading to a wealth of information on the cellular pharmacology and disease involvement of potential therapeutic targets. Extensive compound validation approaches and integration of phenotypic information will lay foundations for further use of chemical probes in biological discovery.

2.
Cell ; 149(1): 214-31, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22464331

RESUMEN

Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.


Asunto(s)
Histonas/química , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Acetilación , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Genoma Humano , Histonas/metabolismo , Humanos , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Dominios y Motivos de Interacción de Proteínas , Proteoma/análisis
3.
Nat Chem Biol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965384

RESUMEN

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD.

4.
Nat Chem Biol ; 20(9): 1164-1175, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38773330

RESUMEN

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.


Asunto(s)
Unión Proteica , Humanos , Proteolisis , Células HEK293 , Sondas Moleculares/química , Sondas Moleculares/metabolismo , ARN Helicasas DEAD-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Degrones , Receptores de Interleucina-17
5.
Nat Chem Biol ; 18(8): 821-830, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35578032

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis and few effective therapies. Here we identified MS023, an inhibitor of type I protein arginine methyltransferases (PRMTs), which has antitumor growth activity in TNBC. Pathway analysis of TNBC cell lines indicates that the activation of interferon responses before and after MS023 treatment is a functional biomarker and determinant of response, and these observations extend to a panel of human-derived organoids. Inhibition of type I PRMT triggers an interferon response through the antiviral defense pathway with the induction of double-stranded RNA, which is derived, at least in part, from inverted repeat Alu elements. Together, our results represent a shift in understanding the antitumor mechanism of type I PRMT inhibitors and provide a rationale and biomarker approach for the clinical development of type I PRMT inhibitors.


Asunto(s)
Proteína-Arginina N-Metiltransferasas , Neoplasias de la Mama Triple Negativas , Biomarcadores , Línea Celular Tumoral , Humanos , Interferones/uso terapéutico , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
6.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34782742

RESUMEN

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Asunto(s)
Nucléolo Celular/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Sondas Moleculares/química , Dominios Proteicos , Proteínas Represoras/metabolismo , Metilación , Mieloma Múltiple/metabolismo , Nucleosomas/metabolismo
7.
J Am Chem Soc ; 145(14): 8176-8188, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36976643

RESUMEN

Nuclear receptor-binding SET domain-containing 2 (NSD2) plays important roles in gene regulation, largely through its ability to dimethylate lysine 36 of histone 3 (H3K36me2). Despite aberrant activity of NSD2 reported in numerous cancers, efforts to selectively inhibit the catalytic activity of this protein with small molecules have been unsuccessful to date. Here, we report the development of UNC8153, a novel NSD2-targeted degrader that potently and selectively reduces the cellular levels of both NSD2 protein and the H3K36me2 chromatin mark. UNC8153 contains a simple warhead that confers proteasome-dependent degradation of NSD2 through a novel mechanism. Importantly, UNC8153-mediated reduction of H3K36me2 through the degradation of NSD2 results in the downregulation of pathological phenotypes in multiple myeloma cells including mild antiproliferative effects in MM1.S cells containing an activating point mutation and antiadhesive effects in KMS11 cells harboring the t(4;14) translocation that upregulates NSD2 expression.


Asunto(s)
Cromatina , Histonas , Histonas/metabolismo , Regulación de la Expresión Génica , Línea Celular Tumoral , Regulación hacia Abajo
8.
Bioorg Med Chem Lett ; 95: 129488, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37770003

RESUMEN

The Hippo pathway regulates organ size and tissue homeostasis by controlling cell proliferation and apoptosis. The YAP-TEAD transcription factor, the downstream effector of the Hippo pathway, regulates the expression of genes such as CTGF, Cyr61, Axl and NF2. Aberrant Hippo activity has been identified in multiple types of cancers. Flufenamic acid (FA) was reported to bind in a liphophilic TEAD palmitic acid (PA) pocket, leading to reduction of the expression of Axl and NF2. Here, we show that the replacement of the trifluoromethyl moiety in FA by aromatic groups, directly connected to the scaffold or separated by a linker, leads to compounds with better affinity to TEAD. Co-crystallization studies show that these compounds bind similarly to FA, but deeper within the PA pocket. Our studies identified LM-41 and AF-2112 as two TEAD binders that strongly reduce the expression of CTGF, Cyr61, Axl and NF2. LM-41 gave the strongest reduction of migration of human MDA-MB-231 breast cancer cells.


Asunto(s)
Ácido Flufenámico , Neoplasias , Humanos , Ácido Flufenámico/farmacología , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Vía de Señalización Hippo , Neoplasias/genética
9.
Nat Chem Biol ; 15(8): 822-829, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31285596

RESUMEN

Here, we report the fragment-based discovery of BI-9321, a potent, selective and cellular active antagonist of the NSD3-PWWP1 domain. The human NSD3 protein is encoded by the WHSC1L1 gene located in the 8p11-p12 amplicon, frequently amplified in breast and squamous lung cancer. Recently, it was demonstrated that the PWWP1 domain of NSD3 is required for the viability of acute myeloid leukemia cells. To further elucidate the relevance of NSD3 in cancer biology, we developed a chemical probe, BI-9321, targeting the methyl-lysine binding site of the PWWP1 domain with sub-micromolar in vitro activity and cellular target engagement at 1 µM. As a single agent, BI-9321 downregulates Myc messenger RNA expression and reduces proliferation in MOLM-13 cells. This first-in-class chemical probe BI-9321, together with the negative control BI-9466, will greatly facilitate the elucidation of the underexplored biological function of PWWP domains.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Sistemas CRISPR-Cas , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Regulación de la Expresión Génica/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
10.
Nature ; 525(7568): 206-11, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26331536

RESUMEN

TP53 (which encodes p53 protein) is the most frequently mutated gene among all human cancers. Prevalent p53 missense mutations abrogate its tumour suppressive function and lead to a 'gain-of-function' (GOF) that promotes cancer. Here we show that p53 GOF mutants bind to and upregulate chromatin regulatory genes, including the methyltransferases MLL1 (also known as KMT2A), MLL2 (also known as KMT2D), and acetyltransferase MOZ (also known as KAT6A or MYST3), resulting in genome-wide increases of histone methylation and acetylation. Analysis of The Cancer Genome Atlas shows specific upregulation of MLL1, MLL2, and MOZ in p53 GOF patient-derived tumours, but not in wild-type p53 or p53 null tumours. Cancer cell proliferation is markedly lowered by genetic knockdown of MLL1 or by pharmacological inhibition of the MLL1 methyltransferase complex. Our study reveals a novel chromatin mechanism underlying the progression of tumours with GOF p53, and suggests new possibilities for designing combinatorial chromatin-based therapies for treating individual cancers driven by prevalent GOF p53 mutations.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina/química , Femenino , Genes Supresores de Tumor , Genoma Humano/genética , Histona Acetiltransferasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Masculino , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Neoplasias/metabolismo , Fenotipo , Unión Proteica , Procesamiento Proteico-Postraduccional
11.
Nucleic Acids Res ; 47(3): 1225-1238, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30462309

RESUMEN

Aberrant isoform expression of chromatin-associated proteins can induce epigenetic programs related to disease. The MDS1 and EVI1 complex locus (MECOM) encodes PRDM3, a protein with an N-terminal PR-SET domain, as well as a shorter isoform, EVI1, lacking the N-terminus containing the PR-SET domain (ΔPR). Imbalanced expression of MECOM isoforms is observed in multiple malignancies, implicating EVI1 as an oncogene, while PRDM3 has been suggested to function as a tumor suppressor through an unknown mechanism. To elucidate functional characteristics of these N-terminal residues, we compared the protein interactomes of the full-length and ΔPR isoforms of PRDM3 and its closely related paralog, PRDM16. Unlike the ΔPR isoforms, both full-length isoforms exhibited a significantly enriched association with components of the NuRD chromatin remodeling complex, especially RBBP4. Typically, RBBP4 facilitates chromatin association of the NuRD complex by binding to histone H3 tails. We show that RBBP4 binds to the N-terminal amino acid residues of PRDM3 and PRDM16, with a dissociation constant of 3.0 µM, as measured by isothermal titration calorimetry. Furthermore, high-resolution X-ray crystal structures of PRDM3 and PRDM16 N-terminal peptides in complex with RBBP4 revealed binding to RBBP4 within the conserved histone H3-binding groove. These data support a mechanism of isoform-specific interaction of PRDM3 and PRDM16 with the NuRD chromatin remodeling complex.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteína del Locus del Complejo MDS1 y EV11/química , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Proteína del Locus del Complejo MDS1 y EV11/genética , Ratones , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína 4 de Unión a Retinoblastoma/química , Proteína 4 de Unión a Retinoblastoma/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
Cell Mol Life Sci ; 76(15): 2967-2985, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31104094

RESUMEN

The methylation of proteins is integral to the execution of many important biological functions, including cell signalling and transcriptional regulation. Protein methyltransferases (PMTs) are a large class of enzymes that carry out the addition of methyl marks to a broad range of substrates. PMTs are critical for normal cellular physiology and their dysregulation is frequently observed in human disease. As such, PMTs have emerged as promising therapeutic targets with several inhibitors now in clinical trials for oncology indications. The discovery of chemical inhibitors and antagonists of protein methylation signalling has also profoundly impacted our general understanding of PMT biology and pharmacology. In this review, we present general principles for drugging protein methyltransferases or their downstream effectors containing methyl-binding modules, as well as best-in-class examples of the compounds discovered and their impact both at the bench and in the clinic.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Medicina de Precisión , Regulación Alostérica , Sitios de Unión , Dominio Catalítico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/uso terapéutico , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/clasificación , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/clasificación , Proteína-Arginina N-Metiltransferasas/metabolismo
13.
Nat Chem Biol ; 13(3): 317-324, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28114273

RESUMEN

Protein lysine methyltransferases (PKMTs) regulate diverse physiological processes including transcription and the maintenance of genomic integrity. Genetic studies suggest that the PKMTs SUV420H1 and SUV420H2 facilitate proficient nonhomologous end-joining (NHEJ)-directed DNA repair by catalyzing the di- and trimethylation (me2 and me3, respectively) of lysine 20 on histone 4 (H4K20). Here we report the identification of A-196, a potent and selective inhibitor of SUV420H1 and SUV420H2. Biochemical and co-crystallization analyses demonstrate that A-196 is a substrate-competitive inhibitor of both SUV4-20 enzymes. In cells, A-196 induced a global decrease in H4K20me2 and H4K20me3 and a concomitant increase in H4K20me1. A-196 inhibited 53BP1 foci formation upon ionizing radiation and reduced NHEJ-mediated DNA-break repair but did not affect homology-directed repair. These results demonstrate the role of SUV4-20 enzymatic activity in H4K20 methylation and DNA repair. A-196 represents a first-in-class chemical probe of SUV4-20 to investigate the role of histone methyltransferases in genomic integrity.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Línea Celular Tumoral , Cristalografía por Rayos X , Reparación del ADN/efectos de los fármacos , Inhibidores Enzimáticos/química , Compuestos Heterocíclicos de 4 o más Anillos/química , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Metilación/efectos de los fármacos , Modelos Moleculares , Estructura Molecular
14.
Nat Chem Biol ; 13(4): 389-395, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28135237

RESUMEN

Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.


Asunto(s)
Antineoplásicos/farmacología , Indanos/farmacología , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Sulfonamidas/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Indanos/química , Modelos Moleculares , Estructura Molecular , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/metabolismo , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/química , Células Tumorales Cultivadas
15.
Nat Chem Biol ; 11(8): 571-578, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26167872

RESUMEN

The CEBPA gene is mutated in 9% of patients with acute myeloid leukemia (AML). Selective expression of a short (30-kDa) CCAAT-enhancer binding protein-α (C/EBPα) translational isoform, termed p30, represents the most common type of CEBPA mutation in AML. The molecular mechanisms underlying p30-mediated transformation remain incompletely understood. We show that C/EBPα p30, but not the normal p42 isoform, preferentially interacts with Wdr5, a key component of SET/MLL (SET-domain/mixed-lineage leukemia) histone-methyltransferase complexes. Accordingly, p30-bound genomic regions were enriched for MLL-dependent H3K4me3 marks. The p30-dependent increase in self-renewal and inhibition of myeloid differentiation required Wdr5, as downregulation of the latter inhibited proliferation and restored differentiation in p30-dependent AML models. OICR-9429 is a new small-molecule antagonist of the Wdr5-MLL interaction. This compound selectively inhibited proliferation and induced differentiation in p30-expressing human AML cells. Our data reveal the mechanism of p30-dependent transformation and establish the essential p30 cofactor Wdr5 as a therapeutic target in CEBPA-mutant AML.


Asunto(s)
Antineoplásicos/farmacología , Compuestos de Bifenilo/farmacología , Dihidropiridinas/farmacología , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Leucemia Mieloide Aguda/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Secuencia de Aminoácidos , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Terapia Molecular Dirigida , Mutación , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Células Tumorales Cultivadas
16.
Proc Natl Acad Sci U S A ; 111(35): 12853-8, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136132

RESUMEN

SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2-a first-in-class, potent (Ki (app) = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7-and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Epigénesis Genética/efectos de los fármacos , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Pirrolidinas/farmacología , Transducción de Señal/efectos de los fármacos , Sulfonamidas/farmacología , Tetrahidroisoquinolinas/farmacología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Fibroblastos/efectos de los fármacos , Vía de Señalización Hippo , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Células MCF-7 , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Mutación , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estructura Terciaria de Proteína , Pirrolidinas/química , Relación Estructura-Actividad , Sulfonamidas/química , Tetrahidroisoquinolinas/química , Factores de Transcripción , Proteínas Señalizadoras YAP
17.
J Proteome Res ; 15(6): 2052-9, 2016 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-27163177

RESUMEN

Protein methylation is a post-translational modification with important roles in transcriptional regulation and other biological processes, but the enzyme-substrate relationship between the 68 known human protein methyltransferases and the thousands of reported methylation sites is poorly understood. Here, we propose a bioinformatic approach that integrates structural, biochemical, cellular, and proteomic data to identify novel cellular substrates of the lysine methyltransferase SMYD2. Of the 14 novel putative SMYD2 substrates identified by our approach, six were confirmed in cells by immunoprecipitation: MAPT, CCAR2, EEF2, NCOA3, STUB1, and UTP14A. Treatment with the selective SMYD2 inhibitor BAY-598 abrogated the methylation signal, indicating that methylation of these novel substrates was dependent on the catalytic activity of the enzyme. We believe that our integrative approach can be applied to other protein lysine methyltransferases, and help understand how lysine methylation participates in wider signaling processes.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/metabolismo , Proteómica/métodos , Línea Celular , Biología Computacional , Humanos , Inmunoprecipitación , Metilación , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
18.
J Biol Chem ; 290(22): 13641-53, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25825497

RESUMEN

SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex with LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. These findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.


Asunto(s)
Antineoplásicos/química , Benzamidas/química , Inhibidores Enzimáticos/química , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Neoplasias/enzimología , Pirrolidinas/química , Línea Celular Tumoral , Proliferación Celular , Cromatina/química , Biología Computacional , Cristalización , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética , Histonas/química , Humanos , Espectrometría de Masas , Neoplasias/tratamiento farmacológico , Péptidos/química , Desnaturalización Proteica , Proteómica , Proteína p53 Supresora de Tumor/metabolismo
19.
Nat Chem Biol ; 9(3): 184-91, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23292653

RESUMEN

We describe the discovery of UNC1215, a potent and selective chemical probe for the methyllysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin-interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a K(d) of 120 nM, competitively displacing mono- or dimethyllysine-containing peptides, and is greater than 50-fold more potent toward L3MBTL3 than other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a unique 2:2 polyvalent mode of interaction between UNC1215 and L3MBTL3. In cells, UNC1215 is nontoxic and directly binds L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins, and point mutants that disrupt the Kme-binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215 on localization. Finally, UNC1215 was used to reveal a new Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.


Asunto(s)
Benzamidas/farmacología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Descubrimiento de Drogas , Lisina/análogos & derivados , Sondas Moleculares/farmacología , Piperidinas/farmacología , Benzamidas/química , Benzamidas/metabolismo , Unión Competitiva/efectos de los fármacos , Cristalografía por Rayos X , Proteínas de Unión al ADN/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Lisina/antagonistas & inhibidores , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estructura Molecular , Piperidinas/química , Piperidinas/metabolismo , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Proteínas Supresoras de Tumor/metabolismo
20.
Angew Chem Int Ed Engl ; 54(17): 5166-70, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25728001

RESUMEN

PRMT3 catalyzes the asymmetric dimethylation of arginine residues of various proteins. It is essential for maturation of ribosomes, may have a role in lipogenesis, and is implicated in several diseases. A potent, selective, and cell-active PRMT3 inhibitor would be a valuable tool for further investigating PRMT3 biology. Here we report the discovery of the first PRMT3 chemical probe, SGC707, by structure-based optimization of the allosteric PRMT3 inhibitors we reported previously, and thorough characterization of this probe in biochemical, biophysical, and cellular assays. SGC707 is a potent PRMT3 inhibitor (IC50 =31±2 nM, KD =53±2 nM) with outstanding selectivity (selective against 31 other methyltransferases and more than 250 non-epigenetic targets). The mechanism of action studies and crystal structure of the PRMT3-SGC707 complex confirm the allosteric inhibition mode. Importantly, SGC707 engages PRMT3 and potently inhibits its methyltransferase activity in cells. It is also bioavailable and suitable for animal studies. This well-characterized chemical probe is an excellent tool to further study the role of PRMT3 in health and disease.


Asunto(s)
Inhibidores Enzimáticos/química , Isoquinolinas/química , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Regulación Alostérica , Sitios de Unión , Calorimetría , Línea Celular Tumoral , Inhibidores Enzimáticos/metabolismo , Células HEK293 , Histonas , Humanos , Isoquinolinas/metabolismo , Metilación , Simulación de Dinámica Molecular , Mutagénesis , Unión Proteica , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Resonancia por Plasmón de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA