Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 179(1): 219-235.e21, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31522890

RESUMEN

Although clonal neo-antigen burden is associated with improved response to immune therapy, the functional basis for this remains unclear. Here we study this question in a novel controlled mouse melanoma model that enables us to explore the effects of intra-tumor heterogeneity (ITH) on tumor aggressiveness and immunity independent of tumor mutational burden. Induction of UVB-derived mutations yields highly aggressive tumors with decreased anti-tumor activity. However, single-cell-derived tumors with reduced ITH are swiftly rejected. Their rejection is accompanied by increased T cell reactivity and a less suppressive microenvironment. Using phylogenetic analyses and mixing experiments of single-cell clones, we dissect two characteristics of ITH: the number of clones forming the tumor and their clonal diversity. Our analysis of melanoma patient tumor data recapitulates our results in terms of overall survival and response to immune checkpoint therapy. These findings highlight the importance of clonal mutations in robust immune surveillance and the need to quantify patient ITH to determine the response to checkpoint blockade.


Asunto(s)
Heterogeneidad Genética/efectos de la radiación , Melanoma/genética , Melanoma/inmunología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Rayos Ultravioleta/efectos adversos , Animales , Carcinogénesis/genética , Línea Celular Tumoral , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Humanos , Linfocitos Infiltrantes de Tumor , Melanoma/mortalidad , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Mutación/efectos de la radiación , Filogenia , Neoplasias Cutáneas/mortalidad , Tasa de Supervivencia , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de la radiación
2.
Nature ; 590(7845): 332-337, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33328638

RESUMEN

Extensive tumour inflammation, which is reflected by high levels of infiltrating T cells and interferon-γ (IFNγ) signalling, improves the response of patients with melanoma to checkpoint immunotherapy1,2. Many tumours, however, escape by activating cellular pathways that lead to immunosuppression. One such mechanism is the production of tryptophan metabolites along the kynurenine pathway by the enzyme indoleamine 2,3-dioxygenase 1 (IDO1), which is induced by IFNγ3-5. However, clinical trials using inhibition of IDO1 in combination with blockade of the PD1 pathway in patients with melanoma did not improve the efficacy of treatment compared to PD1 pathway blockade alone6,7, pointing to an incomplete understanding of the role of IDO1 and the consequent degradation of tryptophan in mRNA translation and cancer progression. Here we used ribosome profiling in melanoma cells to investigate the effects of prolonged IFNγ treatment on mRNA translation. Notably, we observed accumulations of ribosomes downstream of tryptophan codons, along with their expected stalling at the tryptophan codon. This suggested that ribosomes bypass tryptophan codons in the absence of tryptophan. A detailed examination of these tryptophan-associated accumulations of ribosomes-which we term 'W-bumps'-showed that they were characterized by ribosomal frameshifting events. Consistently, reporter assays combined with proteomic and immunopeptidomic analyses demonstrated the induction of ribosomal frameshifting, and the generation and presentation of aberrant trans-frame peptides at the cell surface after treatment with IFNγ. Priming of naive T cells from healthy donors with aberrant peptides induced peptide-specific T cells. Together, our results suggest that IDO1-mediated depletion of tryptophan, which is induced by IFNγ, has a role in the immune recognition of melanoma cells by contributing to diversification of the peptidome landscape.


Asunto(s)
Presentación de Antígeno , Mutación del Sistema de Lectura , Melanoma/inmunología , Péptidos/genética , Péptidos/inmunología , Biosíntesis de Proteínas/inmunología , Linfocitos T/inmunología , Línea Celular , Codón/genética , Sistema de Lectura Ribosómico/efectos de los fármacos , Sistema de Lectura Ribosómico/genética , Sistema de Lectura Ribosómico/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Interferón gamma/inmunología , Interferón gamma/farmacología , Melanoma/patología , Péptidos/química , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Proteoma , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo , Triptófano/deficiencia , Triptófano/genética , Triptófano/metabolismo
3.
PLoS Biol ; 21(6): e3002164, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379316

RESUMEN

A defining property of circadian clocks is temperature compensation, characterized by the resilience of their near 24-hour free-running periods against changes in environmental temperature within the physiological range. While temperature compensation is evolutionary conserved across different taxa of life and has been studied within many model organisms, its molecular underpinnings remain elusive. Posttranscriptional regulations such as temperature-sensitive alternative splicing or phosphorylation have been described as underlying reactions. Here, we show that knockdown of cleavage and polyadenylation specificity factor subunit 6 (CPSF6), a key regulator of 3'-end cleavage and polyadenylation, significantly alters circadian temperature compensation in human U-2 OS cells. We apply a combination of 3'-end-RNA-seq and mass spectrometry-based proteomics to globally quantify changes in 3' UTR length as well as gene and protein expression between wild-type and CPSF6 knockdown cells and their dependency on temperature. Since changes in temperature compensation behavior should be reflected in alterations of temperature responses within one or all of the 3 regulatory layers, we statistically assess differential responses upon changes in ambient temperature between wild-type and CPSF6 knockdown cells. By this means, we reveal candidate genes underlying circadian temperature compensation, including eukaryotic translation initiation factor 2 subunit 1 (EIF2S1).


Asunto(s)
Relojes Circadianos , Animales , Humanos , Relojes Circadianos/genética , Ritmo Circadiano/genética , Mamíferos , Factores de Escisión y Poliadenilación de ARNm/genética , Fosforilación , Temperatura
4.
Mol Cell ; 66(1): 9-21.e7, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28344080

RESUMEN

Circular RNAs (circRNAs) are abundant and evolutionarily conserved RNAs of largely unknown function. Here, we show that a subset of circRNAs is translated in vivo. By performing ribosome footprinting from fly heads, we demonstrate that a group of circRNAs is associated with translating ribosomes. Many of these ribo-circRNAs use the start codon of the hosting mRNA, are bound by membrane-associated ribosomes, and have evolutionarily conserved termination codons. In addition, we found that a circRNA generated from the muscleblind locus encodes a protein, which we detected in fly head extracts by mass spectrometry. Next, by performing in vivo and in vitro translation assays, we show that UTRs of ribo-circRNAs (cUTRs) allow cap-independent translation. Moreover, we found that starvation and FOXO likely regulate the translation of a circMbl isoform. Altogether, our study provides strong evidence for translation of circRNAs, revealing the existence of an unexplored layer of gene activity.


Asunto(s)
Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/metabolismo , Proteínas Nucleares/biosíntesis , Biosíntesis de Proteínas , ARN/metabolismo , Ribosomas/metabolismo , Animales , Línea Celular , Codón Iniciador , Codón de Terminación , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Factores de Transcripción Forkhead/metabolismo , Genotipo , Cabeza , Espectrometría de Masas , Ratones , Mutación , Proteínas Nucleares/genética , Conformación de Ácido Nucleico , Estado Nutricional , Fenotipo , ARN/química , ARN/genética , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN Circular , Ratas , Ribosomas/química , Ribosomas/genética , Inanición/genética , Inanición/metabolismo , Relación Estructura-Actividad , Transfección
5.
Mol Cell Proteomics ; 22(4): 100519, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36828127

RESUMEN

Posttranslational spliced peptides (PTSPs) are a unique class of peptides that have been found to be presented by HLA class-I molecules in cancer. Thus far, no consensus has been reached on the proportion of PTSPs in the immunopeptidome, with estimates ranging from 2% to as high as 45% and stirring significant debate. Furthermore, the role of the HLA class-II pathway in PTSP presentation has been studied only in diabetes. Here, we exploit our large-scale cancer peptidomics database and our newly devised pipeline for filtering spliced peptide predictions to identify recurring spliced peptides, both for HLA class-I and class-II complexes. Our results indicate that HLA class-I-spliced peptides account for a low percentage of the immunopeptidome (less than 3.1%) yet are larger in number relative to other types of identified aberrant peptides. Therefore, spliced peptides significantly contribute to the repertoire of presented peptides in cancer cells. In addition, we identified HLA class-II-bound spliced peptides, but to a lower extent (less than 0.5%). The identified spliced peptides include cancer- and immune-associated genes, such as the MITF oncogene, DAPK1 tumor suppressor, and HLA-E, which were validated using synthetic peptides. The potential immunogenicity of the DAPK1- and HLA-E-derived PTSPs was also confirmed. In addition, a reanalysis of our published mouse single-cell clone immunopeptidome dataset showed that most of the spliced peptides were found repeatedly in a large number of the single-cell clones. Establishing a novel search-scheme for the discovery and evaluation of recurring PTSPs among cancer patients may assist in identifying potential novel targets for immunotherapy.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Neoplasias , Animales , Ratones , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias/genética , Empalme del ARN , Péptidos/metabolismo
6.
Mol Cell ; 58(5): 870-85, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25921068

RESUMEN

Circular RNAs (circRNAs) are an endogenous class of animal RNAs. Despite their abundance, their function and expression in the nervous system are unknown. Therefore, we sequenced RNA from different brain regions, primary neurons, isolated synapses, as well as during neuronal differentiation. Using these and other available data, we discovered and analyzed thousands of neuronal human and mouse circRNAs. circRNAs were extraordinarily enriched in the mammalian brain, well conserved in sequence, often expressed as circRNAs in both human and mouse, and sometimes even detected in Drosophila brains. circRNAs were overall upregulated during neuronal differentiation, highly enriched in synapses, and often differentially expressed compared to their mRNA isoforms. circRNA expression correlated negatively with expression of the RNA-editing enzyme ADAR1. Knockdown of ADAR1 induced elevated circRNA expression. Together, we provide a circRNA brain expression atlas and evidence for important circRNA functions and values as biomarkers.


Asunto(s)
Encéfalo/metabolismo , ARN/metabolismo , Animales , Secuencia de Bases , Línea Celular , Drosophila melanogaster , Humanos , Ratones , Datos de Secuencia Molecular , Neurogénesis , Especificidad de Órganos , ARN/genética , ARN Circular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Sinapsis/metabolismo
7.
Mol Cell ; 56(1): 55-66, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25242144

RESUMEN

Circular RNAs (circRNAs) are widely expressed noncoding RNAs. However, their biogenesis and possible functions are poorly understood. Here, by studying circRNAs that we identified in neuronal tissues, we provide evidence that animal circRNAs are generated cotranscriptionally and that their production rate is mainly determined by intronic sequences. We demonstrate that circularization and splicing compete against each other. These mechanisms are tissue specific and conserved in animals. Interestingly, we observed that the second exon of the splicing factor muscleblind (MBL/MBNL1) is circularized in flies and humans. This circRNA (circMbl) and its flanking introns contain conserved muscleblind binding sites, which are strongly and specifically bound by MBL. Modulation of MBL levels strongly affects circMbl biosynthesis, and this effect is dependent on the MBL binding sites. Together, our data suggest that circRNAs can function in gene regulation by competing with linear splicing. Furthermore, we identified muscleblind as a factor involved in circRNA biogenesis.


Asunto(s)
Drosophila/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , ARN/biosíntesis , Animales , Células Cultivadas , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Células HEK293 , Humanos , Modelos Genéticos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , ARN Circular , Transcripción Genética
8.
Bioinformatics ; 36(Suppl_1): i169-i176, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32657358

RESUMEN

MOTIVATION: Recent advances in single-cell sequencing (SCS) offer an unprecedented insight into tumor emergence and evolution. Principled approaches to tumor phylogeny reconstruction via SCS data are typically based on general computational methods for solving an integer linear program, or a constraint satisfaction program, which, although guaranteeing convergence to the most likely solution, are very slow. Others based on Monte Carlo Markov Chain or alternative heuristics not only offer no such guarantee, but also are not faster in practice. As a result, novel methods that can scale up to handle the size and noise characteristics of emerging SCS data are highly desirable to fully utilize this technology. RESULTS: We introduce PhISCS-BnB (phylogeny inference using SCS via branch and bound), a branch and bound algorithm to compute the most likely perfect phylogeny on an input genotype matrix extracted from an SCS dataset. PhISCS-BnB not only offers an optimality guarantee, but is also 10-100 times faster than the best available methods on simulated tumor SCS data. We also applied PhISCS-BnB on a recently published large melanoma dataset derived from the sublineages of a cell line involving 20 clones with 2367 mutations, which returned the optimal tumor phylogeny in <4 h. The resulting phylogeny agrees with and extends the published results by providing a more detailed picture on the clonal evolution of the tumor. AVAILABILITY AND IMPLEMENTATION: https://github.com/algo-cancer/PhISCS-BnB. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Neoplasias , Humanos , Cadenas de Markov , Neoplasias/genética , Filogenia , Análisis de Secuencia , Programas Informáticos
9.
PLoS Genet ; 13(7): e1006931, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28746393

RESUMEN

In Drosophila, A-to-I editing is prevalent in the brain, and mutations in the editing enzyme ADAR correlate with specific behavioral defects. Here we demonstrate a role for ADAR in behavioral temperature adaptation in Drosophila. Although there is a higher level of editing at lower temperatures, at 29°C more sites are edited. These sites are less evolutionarily conserved, more disperse, less likely to be involved in secondary structures, and more likely to be located in exons. Interestingly, hypomorph mutants for ADAR display a weaker transcriptional response to temperature changes than wild-type flies and a highly abnormal behavioral response upon temperature increase. In sum, our data shows that ADAR is essential for proper temperature adaptation, a key behavior trait that is essential for survival of flies in the wild. Moreover, our results suggest a more general role of ADAR in regulating RNA secondary structures in vivo.


Asunto(s)
Aclimatación/genética , Adaptación Fisiológica/genética , Adenosina Desaminasa/genética , Encéfalo/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Aclimatación/fisiología , Adenosina/genética , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Drosophila melanogaster/fisiología , Exones/genética , Inosina/genética , Mutación , Conformación de Ácido Nucleico , ARN/química , ARN/genética , Edición de ARN/genética , Temperatura
10.
EMBO J ; 34(11): 1538-53, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25916830

RESUMEN

Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/metabolismo , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Glucosa/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Glucosa/genética , Glicerol/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Factores de Transcripción/genética
11.
Nucleic Acids Res ; 45(11): e95, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28335028

RESUMEN

Cells regulate biological responses in part through changes in transcription start sites (TSS) or cleavage and polyadenylation sites (PAS). To fully understand gene regulatory networks, it is therefore critical to accurately annotate cell type-specific TSS and PAS. Here we present a simple and straightforward approach for genome-wide annotation of 5΄- and 3΄-RNA ends. Our approach reliably discerns bona fide PAS from false PAS that arise due to internal poly(A) tracts, a common problem with current PAS annotation methods. We applied our methodology to study the impact of temperature on the Drosophila melanogaster head transcriptome. We found hundreds of previously unidentified TSS and PAS which revealed two interesting phenomena: first, genes with multiple PASs tend to harbor a motif near the most proximal PAS, which likely represents a new cleavage and polyadenylation signal. Second, motif analysis of promoters of genes affected by temperature suggested that boundary element association factor of 32 kDa (BEAF-32) and DREF mediates a transcriptional program at warm temperatures, a result we validated in a fly line where beaf-32 is downregulated. These results demonstrate the utility of a high-throughput platform for complete experimental and computational analysis of mRNA-ends to improve gene annotation.


Asunto(s)
Drosophila melanogaster/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Región de Flanqueo 3' , Región de Flanqueo 5' , Animales , Secuencia de Bases , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Exonucleasas/química , Genes de Insecto , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasa H/química , Transcriptoma
12.
PLoS Genet ; 10(4): e1004252, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24698952

RESUMEN

Most organisms use 24-hr circadian clocks to keep temporal order and anticipate daily environmental changes. In Drosophila melanogaster CLOCK (CLK) and CYCLE (CYC) initiates the circadian system by promoting rhythmic transcription of hundreds of genes. However, it is still not clear whether high amplitude transcriptional oscillations are essential for circadian timekeeping. In order to address this issue, we generated flies in which the amplitude of CLK-driven transcription can be reduced partially (approx. 60%) or strongly (90%) without affecting the average levels of CLK-target genes. The impaired transcriptional oscillations lead to low amplitude protein oscillations that were not sufficient to drive outputs of peripheral oscillators. However, circadian rhythms in locomotor activity were resistant to partial reduction in transcriptional and protein oscillations. We found that the resilience of the brain oscillator is depending on the neuronal communication among circadian neurons in the brain. Indeed, the capacity of the brain oscillator to overcome low amplitude transcriptional oscillations depends on the action of the neuropeptide PDF and on the pdf-expressing cells having equal or higher amplitude of molecular rhythms than the rest of the circadian neuronal groups in the fly brain. Therefore, our work reveals the importance of high amplitude transcriptional oscillations for cell-autonomous circadian timekeeping. Moreover, we demonstrate that the circadian neuronal network is an essential buffering system that protects against changes in circadian transcription in the brain.


Asunto(s)
Ritmo Circadiano/genética , Drosophila melanogaster/genética , Neuronas/fisiología , Animales , Encéfalo/fisiología , Proteínas CLOCK/genética , Ritmo Circadiano/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Actividad Motora/genética , Actividad Motora/fisiología , Neuropéptidos/genética , Proteínas Circadianas Period/genética , Factores de Transcripción , Transcripción Genética/genética
13.
Subcell Biochem ; 85: 161-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25201194

RESUMEN

The presence of a functional p53 protein is a key factor for the proper suppression of cancer development. A loss of p53 activity, by mutations or inhibition, is often associated with human malignancies. The p53 protein integrates various stress signals into a growth restrictive cellular response. In this way, p53 eliminates cells with a potential to become cancerous. Being a powerful decision maker, it is imperative that p53 will be activated properly, efficiently and temporarily in response to stress. Equally important is that p53 activation will be extinguished upon recovery from stress, and that improper activation of p53 will be avoided. Failure to achieve these aims is likely to have catastrophic consequences for the organism. The machinery that governs this tight regulation is largely based on the major inhibitor of p53, Mdm2, which both blocks p53 activities and promotes its destabilization. The interplay between p53 and Mdm2 involves a complex network of positive and negative feedback loops. Relief from Mdm2 suppression is required for p53 to be stabilized and activated in response to stress. Protection from Mdm2 entails a concerted action of modifying enzymes and partner proteins. The association of p53 with the PML-nuclear bodies may provide an infrastructure in which this complex regulatory network can be orchestrated. In this chapter we use examples to illustrate the regulatory machinery that drives this network.


Asunto(s)
Genes p53 , Proteínas Proto-Oncogénicas c-mdm2/genética , Estrés Fisiológico , Humanos , Proteolisis , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ubiquitinación
14.
Blood ; 120(4): 822-32, 2012 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-22689861

RESUMEN

Neoplastic transformation requires the elimination of key tumor suppressors, which may result from E3 ligase-mediated proteasomal degradation. We previously demonstrated a key role for the E3 ubiquitin ligase E6AP in the regulation of promyelocytic leukemia protein (PML) stability and formation of PML nuclear bodies. Here, we report the involvement of the E6AP-PML axis in B-cell lymphoma development. A partial loss of E6AP attenuated Myc-induced B-cell lymphomagenesis. This tumor suppressive action was achieved by the induction of cellular senescence. B-cell lymphomas deficient for E6AP expressed elevated levels of PML and PML-nuclear bodies with a concomitant increase in markers of cellular senescence, including p21, H3K9me3, and p16. Consistently, PML deficiency accelerated the rate of Myc-induced B-cell lymphomagenesis. Importantly, E6AP expression was elevated in ∼ 60% of human Burkitt lymphomas, and down-regulation of E6AP in B-lymphoma cells restored PML expression with a concurrent induction of cellular senescence in these cells. Our findings demonstrate that E6AP-mediated down-regulation of PML-induced senescence is essential for B-cell lymphoma progression. This provides a molecular explanation for the down-regulation of PML observed in non-Hodgkin lymphomas, thereby suggesting a novel therapeutic approach for restoration of tumor suppression in B-cell lymphoma.


Asunto(s)
Linfoma de Burkitt/patología , Senescencia Celular , Linfoma de Células B Grandes Difuso/patología , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas c-myc/fisiología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Linfoma de Burkitt/metabolismo , Línea Celular Tumoral , Transformación Celular Neoplásica , Humanos , Linfoma de Células B Grandes Difuso/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína de la Leucemia Promielocítica , Complejo de la Endopetidasa Proteasomal , Ubiquitina/metabolismo
15.
Proc Biol Sci ; 280(1765): 20130011, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23825200

RESUMEN

Circadian (24 h) clocks provide a source of internal timing in most living organisms. These clocks keep time by using complex transcriptional/post-translational feedback loops that are strikingly resilient to changes in environmental conditions. In the last few years, interest has increased in the role of post-transcriptional regulation of circadian clock components. Post-transcriptional control plays a prominent role in modulating rapid responses of the circadian system to environmental changes, including light, temperature and general stress and will be the focus of this review.


Asunto(s)
Empalme Alternativo , Relojes Circadianos/genética , MicroARNs/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Humanos , Ratones , MicroARNs/genética , Neurospora/genética , Neurospora/metabolismo
16.
bioRxiv ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38077050

RESUMEN

Decreased intra-tumor heterogeneity (ITH) correlates with increased patient survival and immunotherapy response. However, even highly homogenous tumors may display variability in their aggressiveness, and how immunologic-factors impinge on their aggressiveness remains understudied. Here we studied the mechanisms responsible for the immune-escape of murine tumors with low ITH. We compared the temporal growth of homogeneous, genetically-similar single-cell clones that are rejected vs. those that are not-rejected after transplantation in-vivo using single-cell RNA sequencing and immunophenotyping. Non-rejected clones showed high infiltration of tumor-associated-macrophages (TAMs), lower T-cell infiltration, and increased T-cell exhaustion compared to rejected clones. Comparative analysis of rejection-associated gene expression programs, combined with in-vivo CRISPR knockout screens of candidate mediators, identified Mif (macrophage migration inhibitory factor) as a regulator of immune rejection. Mif knockout led to smaller tumors and reversed non-rejection-associated immune composition, particularly, leading to the reduction of immunosuppressive macrophage infiltration. Finally, we validated these results in melanoma patient data.

17.
J Cell Sci ; 123(Pt 14): 2423-33, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20571051

RESUMEN

Tight control of p63 protein levels must be achieved under differentiation or apoptotic conditions. Here, we describe a new regulatory pathway for the DeltaNp63alpha protein. We found that MDM2 binds DeltaNp63alpha in the nucleus promoting its translocation to the cytoplasm. The MDM2 nuclear localization signal is required for DeltaNp63alpha nuclear export and subsequent degradation, whereas the MDM2 ring-finger domain is dispensable. Once exported to the cytoplasm by MDM2, p63 is targeted for degradation by the Fbw7 E3-ubiquitin ligase. Efficient degradation of DeltaNp63alpha by Fbw7 (also known as FBXW7) requires GSK3 kinase activity. By deletion and point mutations analysis we have identified a phosphodegron located in the alpha and beta tail of p63 that is required for degradation. Furthermore, we show that MDM2 or Fbw7 depletion inhibits degradation of endogenous DeltaNp63alpha in cells exposed to UV irradiation, adriamycin and upon keratinocyte differentiation. Our findings suggest that following DNA damage and cellular differentiation MDM2 and Fbw7 can cooperate to regulate the levels of the pro-proliferative DeltaNp63alpha protein.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transactivadores/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/efectos de la radiación , Animales , Proteínas de Ciclo Celular/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Núcleo Celular/efectos de la radiación , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Daño del ADN/genética , Doxorrubicina/farmacología , Proteínas F-Box/genética , Proteína 7 que Contiene Repeticiones F-Box-WD , Humanos , Ratones , Mutación/genética , Unión Proteica/genética , Estructura Terciaria de Proteína/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , ARN Interferente Pequeño/genética , Transactivadores/genética , Factores de Transcripción , Activación Transcripcional/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética , Rayos Ultravioleta/efectos adversos
18.
J Immunol ; 184(6): 2761-8, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20164429

RESUMEN

The killing activity of NK cells is carried out by several activating NK receptors, which includes NKp46, NKp44, NKp30, NKp80, NKG2D, and 2B4. The ligands of these receptors are either self-derived, pathogen-derived, stress-induced ligands or tumor ligands. Importantly, none of these killer ligands are expressed on NK cells and thus self-killing of NK cells is prevented. A notable exception with this regard, is the ligand of the 2B4 receptor. This unusual receptor can exert both activating and inhibiting signals; however, in human NK cells, it serves mainly as an activating receptor. The ligand of 2B4 is CD48 and in contrast to the ligands of all the other NK activating receptors, CD48 is also present on NK cells. Thus, NK cells might be at risk for self-killing that is mediated via the 2B4-CD48 interaction. In this study, we identify a novel mechanism that prevents this self-killing as we show that the association of the MHC class I proteins with the 2B4 receptor, both present on NK cells, results in the attenuation of the 2B4-mediated self-killing of NK cells.


Asunto(s)
Antígenos CD/metabolismo , Pruebas Inmunológicas de Citotoxicidad , Regulación hacia Abajo/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Antígenos CD/inmunología , Antígenos CD/fisiología , Antígeno CD48 , Línea Celular Transformada , Línea Celular Tumoral , Inhibidores de Crecimiento/antagonistas & inhibidores , Inhibidores de Crecimiento/metabolismo , Inhibidores de Crecimiento/fisiología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/fisiología , Humanos , Células Asesinas Naturales/citología , Ligandos , Ratones , Receptores Inmunológicos/antagonistas & inhibidores , Receptores Inmunológicos/fisiología , Transducción de Señal/inmunología , Familia de Moléculas Señalizadoras de la Activación Linfocitaria
19.
Cell Rep ; 39(4): 110740, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35476987

RESUMEN

Muscleblind (mbl) is an essential muscle and neuronal splicing regulator. Mbl hosts multiple circular RNAs (circRNAs), including circMbl, which is conserved from flies to humans. Here, we show that mbl-derived circRNAs are key regulators of MBL by cis- and trans-acting mechanisms. By generating fly lines to specifically modulate the levels of all mbl RNA isoforms, including circMbl, we demonstrate that the two major mbl protein isoforms, MBL-O/P and MBL-C, buffer their own levels by producing different types of circRNA isoforms in the eye and fly brain, respectively. Moreover, we show that circMbl has unique functions in trans, as knockdown of circMbl results in specific morphological and physiological phenotypes. In addition, depletion of MBL-C or circMbl results in opposite behavioral phenotypes, showing that they also regulate each other in trans. Together, our results illuminate key aspects of mbl regulation and uncover cis and trans functions of circMbl in vivo.


Asunto(s)
Empalme del ARN , ARN Circular , Expresión Génica , Neuronas/fisiología , ARN Circular/genética
20.
Cell Discov ; 6: 52, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32818061

RESUMEN

Exonic circular RNAs (circRNAs) are highly abundant RNAs generated mostly from exons of protein-coding genes. Assaying the functions of circRNAs is not straightforward as common approaches for circRNA depletion tend to also alter the levels of mRNAs generated from the hosting gene. Here we describe a methodology for specific knockdown of circRNAs in vivo with tissue and cell resolution. We also describe an experimental and computational platform for determining the potential off-target effects as well as for verifying the obtained phenotypes. Briefly, we utilize shRNAs targeted to the circRNA-specific back-splice junction to specifically downregulate the circRNA. We utilized this methodology to downregulate five circRNAs that are highly expressed in Drosophila. There were no effects on the levels of their linear counterparts or any RNA with complementarity to the expressed shRNA. Interestingly, downregulation of circCtrip resulted in developmental lethality that was recapitulated with a second shRNA. Moreover, downregulation of individual circRNAs caused specific changes in the fly head transcriptome, suggesting roles for these circRNAs in the fly nervous system. Together, our results provide a methodological approach that enables the comprehensive study of circRNAs at the organismal and cellular levels and generated for the first time flies in which specific circRNAs are downregulated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA