RESUMEN
The cell walls of leaf base tissues of the Canary Island date palm (Phoenix canariensis) contain lignins with the most complex compositions described to date. The lignin composition varies by tissue region and is derived from traditional monolignols (ML) along with an unprecedented range of ML conjugates: ML-acetate, ML-benzoate, ML-p-hydroxybenzoate, ML-vanillate, ML-p-coumarate, and ML-ferulate. The specific functions of such complex lignin compositions are unknown. However, the distribution of the ML conjugates varies depending on the tissue region, indicating that they may play specific roles in the cell walls of these tissues and/or in the plant's defense system.
Asunto(s)
Lignina/metabolismo , Phoeniceae/metabolismo , Hojas de la Planta/metabolismo , Pared Celular/metabolismo , Cromatografía en Gel , Lignina/aislamiento & purificación , Espectroscopía de Resonancia Magnética , EspañaRESUMEN
As interest in biomass utilization has grown, the manipulation of lignin biosynthesis has received significant attention, such that recent work has demanded more robust lignin analytical methods. As the derivatization followed by reductive cleavage (DFRC) method is particularly effective for structurally characterizing natively acylated lignins, we used an array of synthetic ß-ether γ-acylated model compounds to determine theoretical yields for all monolignol conjugates currently known to exist in lignin, and we synthesized a new set of deuterated analogs as internal standards for quantification using GC-MS/MS. Yields of the saturated ester conjugates ranged from 40 to 90 %, and NMR analysis revealed the presence of residual unsaturated conjugates in yields of 20 to 35 %. In contrast to traditional selected-ion-monitoring, we demonstrated the superior sensitivity and accuracy of multiple-reaction-monitoring detection methods, and further highlighted the inadequacy of traditional standards relative to isotopically labeled analogs.