Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mater Struct ; 55(10): 243, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36447990

RESUMEN

Production of blended cements in which Portland cement is combined with supplementary cementitious materials (SCM) is an effective strategy for reducing the CO2 emissions during cement manufacturing and achieving sustainable concrete production. However, the high Al2O3 and SiO2 contents of SCM change the chemical composition of the main hydration product, calcium aluminate silicate hydrate (C-A-S-H). Herein, spectroscopic and structural data for C-A-S-H gels are reported in a large range of equilibration times from 3 months up to 2 years and Al/Si molar ratios from 0.001 to 0.2. The 27Al MAS NMR spectroscopy and thermogravimetric analysis indicate that in addition to the C-A-S-H phase, secondary phases such as strätlingite, katoite, Al(OH)3 and calcium aluminate hydrate are present at Al/Si ≥ 0.03 limiting the uptake of Al in C-A-S-H. More secondary phases are present at higher Al concentrations; their content decreases with equilibration time while more Al is taken up in the C-A-S-H phase. At low Al contents, Al concentrations decrease strongly with time indicating a slow equilibration, in contrast to high Al contents where a clear change in Al concentrations over time was not observed indicating that the equilibrium has been reached faster. The 27Al NMR studies show that tetrahedrally coordinated Al is incorporated in C-A-S-H and its amount increases with the amount of Al present in the solution. Supplementary Information: The online version contains supplementary material available at 10.1617/s11527-022-02080-x.

2.
J Colloid Interface Sci ; 572: 246-256, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32247198

RESUMEN

To reduce the CO2 emissions from cement production, Portland cement (PC) is partially replaced by supplementary cementitious materials (SCM). Reactions of SCM with PC during hydration leads to the formation of CSH with more silicon and aluminum than in PC, which affects the stability and durability of such concrete. Therefore, it is crucial to determine the role of aluminum on CSH properties to predict the formed hydrate phase assemblages and their effects on durability. Aluminum sorption isotherms including very low Al concentrations have been determined for CSH with Ca/Si ratios from 0.6 to 1.4. Elemental measurements were performed with ICP-MS and ICP-OES. The presence of secondary phases was investigated by using thermogravimetric analysis and XRD. Higher dissolved concentrations of Al were observed at increased alkali hydroxide concentrations and thus higher pH values. High alkali hydroxide led to an increased Al(OH)4- formation, which reduced the Al uptake in CSH. This comparable behavior of Al and Si towards changes in pH values, points toward the uptake of aluminum within the silica chain both at low and high Ca/Si ratios. A higher Al uptake in CSH was observed at higher Ca/Si ratios, which indicates a stabilizing effect of calcium in the interlayer on Al uptake.

3.
Bioresour Technol ; 245(Pt A): 633-640, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28910651

RESUMEN

This study focussed on evaluating the effect of hydrogen sulfide (H2S) on biological oxidation of waste methane (CH4) gas in compost biofilters, Batch experiments were conducted to determine the dependency of maximum methane oxidation rate (Vmax) on two main factors; pH and moisture content, as well as their interaction effects. The maximum Vmax was observed at a pH of 7.2 with decreasing Vmax values observed with decreasing pH, irrespective of moisture content. Flow-through columns operated at a pH of 4.5 oxidized CH4 at a flux rate of 53g/m2/d compared to 146g/m2/d in columns operated at neutral pH. No oxidation activity was observed for columns operated at pH 2.5, and DNA sequencing analysis of samples led to the conclusion that highly acidic conditions were responsible for inhibiting the ability of methanotrophs to oxidize CH4. Biofilter columns operated at pH 2.5 contained only 2% methanotrophs (type I) out of the total microbial population, compared to 55% in columns operated at pH 7.5. Overall, changes in the population of methanotrophs with acidification within the biofilters compromised its capacity to oxidize CH4 which demonstrated that a compost biofilter could not operate efficiently in the presence of high levels of H2S.


Asunto(s)
Metano , Suelo , Reactores Biológicos , Filtración , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA