Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065790

RESUMEN

The majority of the well-known pharmacogenomics research used in the medical sciences contributes to our understanding of medication interactions. It has a significant impact on treatment and drug development. The broad use of pharmacogenomics is required for the progress of therapy. The main focus is on how genes and an intricate gene system affect the body's reaction to medications. Novel biomarkers that help identify a patient group that is more or less likely to respond to a certain medication have been discovered as a result of recent developments in the field of clinical therapeutics. It aims to improve customized therapy by giving the appropriate drug at the right dose at the right time and making sure that the right prescriptions are issued. A combination of genetic, environmental, and patient variables that impact the pharmacokinetics and/or pharmacodynamics of medications results in interindividual variance in drug response. Drug development, illness susceptibility, and treatment efficacy are all impacted by pharmacogenomics. The purpose of this work is to give a review that might serve as a foundation for the creation of new pharmacogenomics applications, techniques, or strategies.

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167353, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39004381

RESUMEN

BACKGROUND: The growth arrest and DNA damage-inducible 45 (Gadd45) gene has been implicated in various central nervous system (CNS) functions, both normal and pathological, including aging, memory, and neurodegenerative diseases. In this study, we examined whether Gadd45A deletion triggers pathways associated with neurodegenerative diseases including Alzheimer's disease (AD). METHODS: Utilizing transcriptome data from AD-associated hippocampus samples, we identified Gadd45A as a pivotal regulator of autophagy. Comprehensive analyses, including Gene Ontology enrichment and protein-protein interaction network assessments, highlighted Cdkn1A as a significant downstream target of Gadd45A. Experimental validation confirmed Gadd45A's role in modulating Cdkn1A expression and autophagy levels in hippocampal cells. We also examined the effects of autophagy on hippocampal functions and proinflammatory cytokine secretion. Additionally, a murine model was employed to validate the importance of Gadd45A in neuroinflammation and AD pathology. RESULTS: Our study identified 20 autophagy regulatory factors associated with AD, with Gadd45A emerging as a critical regulator. Experimental findings demonstrated that Gadd45A influences hippocampal cell fate by reducing Cdkn1A expression and suppressing autophagic activity. Comparisons between wild-type (WT) and Gadd45A knockout (Gadd45A-/-) mice revealed that Gadd45A-/- mice exhibited significant cognitive impairments, including deficits in working and spatial memory, increased Tau hyperphosphorylation, and elevated levels of kinases involved in Tau phosphorylation in the hippocampus. Additionally, Gadd45A-/- mice showed significant increases in pro-inflammatory cytokines and decreases autophagy markers in the brain. Neurotrophin levels and dendritic spine length were also reduced in Gadd45A-/- mice, likely contributing to the observed cognitive deficits. CONCLUSIONS: These findings support the direct involvement of the Gadd45A gene in AD pathogenesis, and enhancing the expression of Gadd45A may represent a promising therapeutic strategy for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Autofagia , Proteínas de Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Hipocampo , Ratones Noqueados , Animales , Autofagia/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Ratones , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Humanos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Modelos Animales de Enfermedad , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas , Proteinas GADD45
3.
J Biomol Struct Dyn ; : 1-13, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124513

RESUMEN

Ebola virus (EBOV) poses a severe threat as a highly infectious pathogen, causing devastating hemorrhagic fever in both humans and animals. The EBOV virus VP35 protein plays a crucial role in viral replication and exhibits the ability to suppress the host interferon cascade, leading to immune system depletion. As a potential drug target, VP35 protein inhibition holds promise for combating EBOV. To discover new drug candidates, we employed a computer-aided drug design approach, focusing on compounds capable of inhibiting VP35 protein replication. In this connection, a pharmacophore model was generated using molecular interactions between the VP35 protein and its inhibitor. ZINC and Cambridge database were screened using validated pharmacophore model. Further the compounds were filtered based on Lipinski's rule of five and subjected to MD simulation and relative binding free energy calculation. Six compounds manifest a significant docking score and strong binding interaction towards VP35 protein. MD simulations further confirmed the remarkable stability of these six complexes. Relative binding free energy calculations also showed significant ΔG value in the range of -132.3 and -49.3 kcal/mol. This study paves the way for further optimization of these compounds as potential inhibitors of VP35, facilitating subsequent experimental in vitro studies.Communicated by Ramaswamy H. Sarma.

4.
Cancers (Basel) ; 13(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33947031

RESUMEN

BACKGROUND: It would be clinically useful to prospectively identify the risk of disease progression in chronic myeloid leukaemia (CML). Overexpression of cancerous inhibitor of protein phosphatase 2A (PP2A) (CIP2A) protein is an adverse prognostic indicator in many cancers. METHODS: We examined CIP2A protein levels in diagnostic samples from the SPIRIT2 trial in 172 unselected patients, of whom 90 received imatinib and 82 dasatinib as first-line treatment. RESULTS: High CIP2A levels correlated with inferior progression-free survival (p = 0.04) and with worse freedom from progression (p = 0.03), and these effects were confined to dasatinib recipients. High CIP2A levels were associated with a six-fold higher five-year treatment failure rate than low CIP2A levels (41% vs. 7.5%; p = 0.0002), in both imatinib (45% vs. 11%; p = 0.02) and dasatinib recipients (36% vs. 4%; p = 0.007). Imatinib recipients with low CIP2A levels had a greater risk of treatment failure (p = 0.0008). CIP2A levels were independent of Sokal, Hasford, EUTOS (EUropean Treatment and Outcome Study), or EUTOS long-term survival scores (ELTS) or the presence of major route cytogenetic abnormalities. No association was seen between CIP2A levels and time to molecular response or the levels of the CIP2A-related proteins PP2A, SET, SET binding protein 1 (SETBP1), or AKT. CONCLUSIONS: These data confirm that high diagnostic CIP2A levels correlate with subsequent disease progression and treatment failure. CIP2A is a simple diagnostic biomarker that may be useful in planning treatment strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA