Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Genome Res ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993137

RESUMEN

Single-cell DNA sequencing enables the construction of evolutionary trees that can reveal how tumors gain mutations and grow. Different whole-genome amplification procedures render genomic materials of different characteristics, often suitable for the detection of either single-nucleotide variation or copy number aberration, but not ideally for both. Consequently, this hinders the inference of a comprehensive phylogenetic tree and limits opportunities to investigate the interplay of SNVs and CNAs. Existing methods such as SCARLET and COMPASS require that the SNVs and CNAs are detected from the same sets of cells, which is technically challenging. Here we present a novel computational tool, SCsnvcna, that places SNVs on a tree inferred from CNA signals, whereas the sets of cells rendering the SNVs and CNAs are independent, offering a more practical solution in terms of the technical challenges. SCsnvcna is a Bayesian probabilistic model using both the genotype constraints on the tree and the cellular prevalence to search the optimal solution. Comprehensive simulations and comparison with seven state-of-the-art methods show that SCsnvcna is robust and accurate in a variety of circumstances. Particularly, SCsnvcna most frequently produces the lowest error rates, with ability to scale to a wide range of numerical values for leaf nodes in the tree, SNVs, and SNV cells. The application of SCsnvcna to two published colorectal cancer data sets shows highly consistent placement of SNV cells and SNVs with the original study while also supporting a refined placement of ATP7B, illustrating SCsnvcna's value in analyzing complex multitumor samples.

2.
Mol Biol Evol ; 41(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38758089

RESUMEN

Polyploidy is a prominent mechanism of plant speciation and adaptation, yet the mechanistic understandings of duplicated gene regulation remain elusive. Chromatin structure dynamics are suggested to govern gene regulatory control. Here, we characterized genome-wide nucleosome organization and chromatin accessibility in allotetraploid cotton, Gossypium hirsutum (AADD, 2n = 4X = 52), relative to its two diploid parents (AA or DD genome) and their synthetic diploid hybrid (AD), using DNS-seq. The larger A-genome exhibited wider average nucleosome spacing in diploids, and this intergenomic difference diminished in the allopolyploid but not hybrid. Allopolyploidization also exhibited increased accessibility at promoters genome-wide and synchronized cis-regulatory motifs between subgenomes. A prominent cis-acting control was inferred for chromatin dynamics and demonstrated by transposable element removal from promoters. Linking accessibility to gene expression patterns, we found distinct regulatory effects for hybridization and later allopolyploid stages, including nuanced establishment of homoeolog expression bias and expression level dominance. Histone gene expression and nucleosome organization are coordinated through chromatin accessibility. Our study demonstrates the capability to track high-resolution chromatin structure dynamics and reveals their role in the evolution of cis-regulatory landscapes and duplicate gene expression in polyploids, illuminating regulatory ties to subgenomic asymmetry and dominance.


Asunto(s)
Cromatina , Diploidia , Evolución Molecular , Gossypium , Poliploidía , Gossypium/genética , Cromatina/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Nucleosomas/genética , Genes Duplicados , Regiones Promotoras Genéticas
3.
PLoS Genet ; 17(8): e1009689, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34383745

RESUMEN

Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas.


Asunto(s)
Huella de ADN/métodos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Zea mays/genética , Sitios de Unión , Secuenciación de Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Elementos Reguladores de la Transcripción , Secuenciación Completa del Genoma
4.
J Cell Sci ; 132(3)2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30659121

RESUMEN

The linker of nucleoskeleton to cytoskeleton (LINC) complex is an essential multi-protein structure spanning the nuclear envelope. It connects the cytoplasm to the nucleoplasm, functions to maintain nuclear shape and architecture and regulates chromosome dynamics during cell division. Knowledge of LINC complex composition and function in the plant kingdom is primarily limited to Arabidopsis, but critically missing from the evolutionarily distant monocots, which include grasses, the most important agronomic crops worldwide. To fill this knowledge gap, we identified and characterized 22 maize genes, including a new grass-specific KASH gene family. By using bioinformatic, biochemical and cell biological approaches, we provide evidence that representative KASH candidates localize to the nuclear periphery and interact with Zea mays (Zm)SUN2 in vivo FRAP experiments using domain deletion constructs verified that this SUN-KASH interaction was dependent on the SUN but not the coiled-coil domain of ZmSUN2. A summary working model is proposed for the entire maize LINC complex encoded by conserved and divergent gene families. These findings expand our knowledge of the plant nuclear envelope in a model grass species, with implications for both basic and applied cellular research.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Proteínas Asociadas a Microtúbulos/genética , Membrana Nuclear/metabolismo , Matriz Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Zea mays/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestructura , División Celular , Cromatina/metabolismo , Cromatina/ultraestructura , Citoplasma/metabolismo , Citoplasma/ultraestructura , Ontología de Genes , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Anotación de Secuencia Molecular , Familia de Multigenes , Membrana Nuclear/ultraestructura , Matriz Nuclear/ultraestructura , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
5.
Plant Physiol ; 183(1): 206-220, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32205451

RESUMEN

The selection and firing of DNA replication origins play key roles in ensuring that eukaryotes accurately replicate their genomes. This process is not well documented in plants due in large measure to difficulties in working with plant systems. We developed a new functional assay to label and map very early replicating loci that must, by definition, include at least a subset of replication origins. Arabidopsis (Arabidopsis thaliana) cells were briefly labeled with 5-ethynyl-2'-deoxy-uridine, and nuclei were subjected to two-parameter flow sorting. We identified more than 5500 loci as initiation regions (IRs), the first regions to replicate in very early S phase. These were classified as strong or weak IRs based on the strength of their replication signals. Strong initiation regions were evenly spaced along chromosomal arms and depleted in centromeres, while weak initiation regions were enriched in centromeric regions. IRs are AT-rich sequences flanked by more GC-rich regions and located predominantly in intergenic regions. Nuclease sensitivity assays indicated that IRs are associated with accessible chromatin. Based on these observations, initiation of plant DNA replication shows some similarity to, but is also distinct from, initiation in other well-studied eukaryotic systems.


Asunto(s)
Arabidopsis/metabolismo , Cromatina/metabolismo , ADN de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN de Plantas/fisiología , Origen de Réplica/genética , Origen de Réplica/fisiología
6.
Proc Natl Acad Sci U S A ; 113(22): E3177-84, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185945

RESUMEN

Cellular processes mediated through nuclear DNA must contend with chromatin. Chromatin structural assays can efficiently integrate information across diverse regulatory elements, revealing the functional noncoding genome. In this study, we use a differential nuclease sensitivity assay based on micrococcal nuclease (MNase) digestion to discover open chromatin regions in the maize genome. We find that maize MNase-hypersensitive (MNase HS) regions localize around active genes and within recombination hotspots, focusing biased gene conversion at their flanks. Although MNase HS regions map to less than 1% of the genome, they consistently explain a remarkably large amount (∼40%) of heritable phenotypic variance in diverse complex traits. MNase HS regions are therefore on par with coding sequences as annotations that demarcate the functional parts of the maize genome. These results imply that less than 3% of the maize genome (coding and MNase HS regions) may give rise to the overwhelming majority of phenotypic variation, greatly narrowing the scope of the functional genome.


Asunto(s)
Cromatina/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Nucleosomas/genética , Proteínas de Plantas/genética , Zea mays/genética , Exones/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nucleasa Microcócica/metabolismo , Zea mays/metabolismo
7.
BMC Bioinformatics ; 19(1): 131, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29642840

RESUMEN

BACKGROUND: Identification of functional elements of a genome often requires dividing a sequence of measurements along a genome into segments where adjacent segments have different properties, such as different mean values. Despite dozens of algorithms developed to address this problem in genomics research, methods with improved accuracy and speed are still needed to effectively tackle both existing and emerging genomic and epigenomic segmentation problems. RESULTS: We designed an efficient algorithm, called iSeg, for segmentation of genomic and epigenomic profiles. iSeg first utilizes dynamic programming to identify candidate segments and test for significance. It then uses a novel data structure based on two coupled balanced binary trees to detect overlapping significant segments and update them simultaneously during searching and refinement stages. Refinement and merging of significant segments are performed at the end to generate the final set of segments. By using an objective function based on the p-values of the segments, the algorithm can serve as a general computational framework to be combined with different assumptions on the distributions of the data. As a general segmentation method, it can segment different types of genomic and epigenomic data, such as DNA copy number variation, nucleosome occupancy, nuclease sensitivity, and differential nuclease sensitivity data. Using simple t-tests to compute p-values across multiple datasets of different types, we evaluate iSeg using both simulated and experimental datasets and show that it performs satisfactorily when compared with some other popular methods, which often employ more sophisticated statistical models. Implemented in C++, iSeg is also very computationally efficient, well suited for large numbers of input profiles and data with very long sequences. CONCLUSIONS: We have developed an efficient general-purpose segmentation tool and showed that it had comparable or more accurate results than many of the most popular segment-calling algorithms used in contemporary genomic data analysis. iSeg is capable of analyzing datasets that have both positive and negative values. Tunable parameters allow users to readily adjust the statistical stringency to best match the biological nature of individual datasets, including widely or sparsely mapped genomic datasets or those with non-normal distributions.


Asunto(s)
Algoritmos , Bases de Datos Genéticas , Epigenómica , Simulación por Computador , Variaciones en el Número de Copia de ADN/genética , Desoxirribonucleasas/metabolismo , Genoma , Humanos , Modelos Estadísticos , Neoplasias/genética , Zea mays/genética
8.
Plant Cell ; 26(10): 3883-93, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25361955

RESUMEN

The eukaryotic genome is organized into nucleosomes, the fundamental units of chromatin. The positions of nucleosomes on DNA regulate protein-DNA interactions and in turn influence DNA-templated events. Despite the increasing number of genome-wide maps of nucleosome position, how global changes in gene expression relate to changes in nucleosome position is poorly understood. We show that in nucleosome occupancy mapping experiments in maize (Zea mays), particular genomic regions are highly susceptible to variation introduced by differences in the extent to which chromatin is digested with micrococcal nuclease (MNase). We exploited this digestion-linked variation to identify protein footprints that are hypersensitive to MNase digestion, an approach we term differential nuclease sensitivity profiling (DNS-chip). Hypersensitive footprints were enriched at the 5' and 3' ends of genes, associated with gene expression levels, and significantly overlapped with conserved noncoding sequences and the binding sites of the transcription factor KNOTTED1. We also found that the tissue-specific regulation of gene expression was linked to tissue-specific hypersensitive footprints. These results reveal biochemical features of nucleosome organization that correlate with gene expression levels and colocalize with functional DNA elements. This approach to chromatin profiling should be broadly applicable to other species and should shed light on the relationships among chromatin organization, protein-DNA interactions, and genome regulation.


Asunto(s)
Cromatina/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Nucleasa Microcócica/metabolismo , Zea mays/genética , Sitios de Unión/genética , Cromatina/metabolismo , Huella de ADN/métodos , ADN de Plantas/metabolismo , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Zea mays/metabolismo
9.
Biochemistry ; 54(9): 1743-57, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25679041

RESUMEN

Noncanonical forms of DNA like the guanine quadruplex (G4) play important roles in regulating transcription and translation through interactions with their protein partners. Although potential G4 elements have been identified in or near genes from species diverse as bacteria, mammals, and plants, little is known about how they might function as cis-regulatory elements or as binding sites for trans-acting protein partners. In fact, until now no G4 binding partners have been identified in the plant kingdom. Here, we report on the cloning and characterization of the first plant-kingdom gene known to encode a G4-binding protein, maize (Zea mays L.) nucleoside diphosphate kinase1 (ZmNDPK1). Structural characterization by X-ray crystallography reveals that it is a homohexamer, akin to other known NDPKs like the human homologue NM23-H2. Further probing into the G4-binding properties of both NDPK homologues suggests that ZmNDPK1 possesses properties distinct from that of NM23-H2, which is known to interact with a G-rich sequence element upstream of the c-myc gene and, in doing so, modulate its expression. Indeed, ZmNDPK1 binds the folded G4 with low nanomolar affinity but corresponding unfolded G-rich DNA more weakly, whereas NM23-H2 binds both folded and unfolded G4 with low nanomolar affinities; nonetheless, both homologues appear to stabilize folded DNAs whether they were prefolded or not. We also demonstrate that the G4-binding activity of ZmNDPK1 is independent of nucleotide binding and kinase activity, suggesting that the G4-binding region and the enzyme active sites are separate. Together, these findings establish a broad evolutionary conservation of some NDPKs as G4-DNA binding enzymes, but with potentially distinct biochemical properties that may reflect divergent evolution or species-specific deployment of these elements in gene regulatory processes.


Asunto(s)
G-Cuádruplex , Inestabilidad Genómica , Nucleósido Difosfato Quinasas NM23/genética , Zea mays/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Clonación Molecular , ADN de Plantas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Nucleósido Difosfato Quinasas NM23/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Homología de Secuencia , Zea mays/enzimología
10.
Plant Mol Biol ; 89(4-5): 339-51, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26394866

RESUMEN

Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with "gene islands" mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.


Asunto(s)
Replicación del ADN/genética , Endorreduplicación/genética , Zea mays/crecimiento & desarrollo , Zea mays/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Momento de Replicación del ADN/genética , ADN de Plantas/biosíntesis , ADN de Plantas/genética , Genes de Plantas , Imagenología Tridimensional , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Modelos Biológicos , Fase S/genética , Zea mays/metabolismo
11.
J Cell Sci ; 125(Pt 15): 3681-90, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22553213

RESUMEN

Meiosis involves a dramatic reorganization of the genetic material, along with changes in the architecture of the nucleoplasm and cytoplasm. In the opisthokonts, nuclear envelope and meiotic chromosome behavior are coordinated by forces generated in the cytoplasm and transferred to the nucleus by the nuclear-envelope protein linkers SUN and KASH. During meiotic prophase I, the telomere bouquet arrangement has roles in interhomolog recognition, pairing, synapsis, interlock resolution and homologous chromosome recombination. The maize desynaptic (dy) mutant is defective in homologous chromosome synapsis, recombination, telomere-nuclear envelope interactions and chromosome segregation. A detailed three-dimensional cytological analysis of dy revealed telomere misplacement during the bouquet stage, synaptic irregularities, nuclear envelope distortion and chromosome bridges at anaphase I. Using linkage and B-A translocation mapping, we placed dy on the long arm of chromosome 3, genetic bin 3.06. SSR marker analysis narrowed the mapping interval to 9 cM. Candidate genes in this region include a PM3-type SUN domain protein, ZmSUN3. No obvious genetic lesions were found in the ZmSUN3 allele of dy, but a conspicuous splice variant, ZmSUN3-sv1, was observed in mRNA from dy. The variant message is predicted to result in the synthesis of a truncated ZmSUN3 protein lacking two C-terminal transmembrane domains. Other potential candidate genes relevant to the documented phenotypes were also considered. In summary, this study reveals that dy causes disruption of a central meiotic pathway connecting nuclear envelope integrity to telomere localization and synapsis during meiotic prophase.


Asunto(s)
Núcleo Celular/genética , Segregación Cromosómica , Meiosis/genética , Mutación , Sinapsis/genética , Telómero/metabolismo , Zea mays/genética , Ligamiento Genético , Hibridación Fluorescente in Situ , Telómero/genética , Zea mays/ultraestructura
12.
Plant Physiol ; 162(2): 1127-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23572549

RESUMEN

The nucleosome is a fundamental structural and functional chromatin unit that affects nearly all DNA-templated events in eukaryotic genomes. It is also a biochemical substrate for higher order, cis-acting gene expression codes and the monomeric structural unit for chromatin packaging at multiple scales. To predict the nucleosome landscape of a model plant genome, we used a support vector machine computational algorithm trained on human chromatin to predict the nucleosome occupancy likelihood (NOL) across the maize (Zea mays) genome. Experimentally validated NOL plots provide a novel genomic annotation that highlights gene structures, repetitive elements, and chromosome-scale domains likely to reflect regional gene density. We established a new genome browser (http://www.genomaize.org) for viewing support vector machine-based NOL scores. This annotation provides sequence-based comprehensive coverage across the entire genome, including repetitive genomic regions typically excluded from experimental genomics data. We find that transposable elements often displayed family-specific NOL profiles that included distinct regions, especially near their termini, predicted to have strong affinities for nucleosomes. We examined transcription start site consensus NOL plots for maize gene sets and discovered that most maize genes display a typical +1 nucleosome positioning signal just downstream of the start site but not upstream. This overall lack of a -1 nucleosome positioning signal was also predicted by our method for Arabidopsis (Arabidopsis thaliana) genes and verified by additional analysis of previously published Arabidopsis MNase-Seq data, revealing a general feature of plant promoters. Our study advances plant chromatin research by defining the potential contribution of the DNA sequence to observed nucleosome positioning and provides an invariant baseline annotation against which other genomic data can be compared.


Asunto(s)
Algoritmos , Ensamble y Desensamble de Cromatina , Modelos Genéticos , Nucleosomas/genética , Zea mays/genética , Arabidopsis/genética , Cromosomas de las Plantas , Elementos Transponibles de ADN , Variación Genética , Genoma Humano , Genoma de Planta , Humanos , Internet , Anotación de Secuencia Molecular , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte
13.
J Exp Bot ; 65(10): 2747-56, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24449386

RESUMEN

The progress of nuclear DNA replication is complex in both time and space, and may reflect several levels of chromatin structure and 3-dimensional organization within the nucleus. To understand the relationship between DNA replication and developmental programmes, it is important to examine replication and nuclear substructure in different developmental contexts including natural cell-cycle progressions in situ. Plant meristems offer an ideal opportunity to analyse such processes in the context of normal growth of an organism. Our current understanding of large-scale chromosomal DNA replication has been limited by the lack of appropriate tools to visualize DNA replication with high resolution at defined points within S phase. In this perspective, we discuss a promising new system that can be used to visualize DNA replication in isolated maize (Zea mays L.) root tip nuclei after in planta pulse labelling with the thymidine analogue, 5-ethynyl-2'-deoxyuridine (EdU). Mixed populations of EdU-labelled nuclei are then separated by flow cytometry into sequential stages of S phase and examined directly using 3-dimensional deconvolution microscopy to characterize spatial patterns of plant DNA replication. Combining spatiotemporal analyses with studies of replication and epigenetic inheritance at the molecular level enables an integrated experimental approach to problems of mitotic inheritance and cellular differentiation.


Asunto(s)
Replicación del ADN , ADN de Plantas/biosíntesis , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Secuencia de Bases , Núcleo Celular/genética , Hibridación Fluorescente in Situ , Sondas de Oligonucleótidos , Zea mays/genética
14.
Chromosome Res ; 20(4): 363-80, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22588802

RESUMEN

Integrated cytogenetic pachytene fluorescence in situ hybridization (FISH) maps were developed for chromosomes 1, 3, 4, 5, 6, and 8 of maize using restriction fragment length polymorphism marker-selected Sorghum propinquum bacterial artificial chromosomes (BACs) for 19 core bin markers and 4 additional genetic framework loci. Using transgenomic BAC FISH mapping on maize chromosome addition lines of oats, we found that the relative locus position along the pachytene chromosome did not change as a function of total arm length, indicative of uniform axial contraction along the fibers during mid-prophase for tested loci on chromosomes 4 and 5. Additionally, we cytogenetically FISH mapped six loci from chromosome 9 onto their duplicated syntenic regions on chromosomes 1 and 6, which have varying amounts of sequence divergence, using sorghum BACs homologous to the chromosome 9 loci. We found that successful FISH mapping was possible even when the chromosome 9 selective marker had no counterpart in the syntenic block. In total, these 29 FISH-mapped loci were used to create the most extensive pachytene FISH maps to date for these six maize chromosomes. The FISH-mapped loci were then merged into one composite karyotype for direct comparative analysis with the recombination nodule-predicted cytogenetic, genetic linkage, and genomic physical maps using the relative marker positions of the loci on all the maps. Marker colinearity was observed between all pair-wise map comparisons, although marker distribution patterns varied widely in some cases. As expected, we found that the recombination nodule-based predictions most closely resembled the cytogenetic map positions overall. Cytogenetic and linkage map comparisons agreed with previous studies showing a decrease in marker spacing in the peri-centromeric heterochromatin region on the genetic linkage maps. In fact, there was a general trend with most loci mapping closer towards the telomere on the linkage maps than on the cytogenetic maps, regardless of chromosome number or maize inbred line source, with just some of the telomeric loci exempted. Finally and somewhat surprisingly, we observed considerable variation between the relative arm positions of loci when comparing our cytogenetic FISH map to the B73 genomic physical maps, even where comparisons were to a B73-derived cytogenetic map. This variation is more evident between different chromosome arms, but less so within a given arm, ruling out any type of inbred-line dependent global features of linear deoxyribonucleic acid compared with the meiotic fiber organization. This study provides a means for analyzing the maize genome structure by producing new connections for integrating the cytogenetic, linkage, and physical maps of maize.


Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Hibridación Fluorescente in Situ/métodos , Mapeo Físico de Cromosoma , Zea mays/genética , Avena/genética , Cromosomas Artificiales Bacterianos , Ligamiento Genético , Sitios Genéticos , Cariotipificación , Duplicaciones Segmentarias en el Genoma
15.
J Biomed Biotechnol ; 2011: 386862, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21234422

RESUMEN

The integration of genetic and physical maps of maize is progressing rapidly, but the cytogenetic maps lag behind, with the exception of the pachytene fluorescence in situ hybridization (FISH) maps of maize chromosome 9. We sought to produce integrated FISH maps of other maize chromosomes using Core Bin Marker loci. Because these 1 Kb restriction fragment length polymorphism (RFLP) probes are below the FISH detection limit, we used BACs from sorghum, a small-genome relative of maize, as surrogate clones for FISH mapping. We sequenced 151 maize RFLP probes and compared in silico BAC selection methods to that of library filter hybridization and found the latter to be the best. BAC library screening, clone verification, and single-clone selection criteria are presented along with an example of transgenomic BAC FISH mapping. This strategy has been used to facilitate the integration of RFLP and FISH maps in other large-genome species.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Sondas de ADN/metabolismo , Hibridación Fluorescente in Situ/métodos , Sorghum/genética , Zea mays/genética , Southern Blotting , Electroforesis en Gel de Agar , Etidio/metabolismo , Sitios Genéticos/genética , Marcadores Genéticos , Genoma de Planta/genética , Mapeo Físico de Cromosoma , Plantas Modificadas Genéticamente , Polimorfismo de Longitud del Fragmento de Restricción/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
16.
Plant Direct ; 5(8): e337, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34430792

RESUMEN

Plant chromatin dynamics are generally recognized as playing a role in the genomic response to environmental stress. Although stress-induced transcriptional activities of LTR-retrotransposons have been reported, whether the stress response can be detected at the level of chromatin structure for LTR-retrotransposons is largely unknown. Using differential nuclease sensitivity profiling, we identified that two out of 29 maize LTR-retrotransposon families change their chromatin structure in response to drought stress in leaf tissue. The two LTR-retrotransposon families, uloh and vegu, are classified as nonautonomous LTR-retrotransposons. Differently from other families, the chromatin structure of these two families shifted from more open in normal conditions to more closed following drought stress. Although uloh and vegu lack sequence similarity, most of them shared an intriguing feature of having a new and uncharacterized insertion of a DNA sequence near one side of an LTR. In the uloh family, nine members with a strong drought response also exhibited a drought-induced reduction of published H3K4me3 histone modification in the inserted DNA region, implicating this modification in the chromatin structural changes. Our results provide new insight into how LTR-retrotransposons can alter their chromatin structure following stress response in plants.

17.
Front Plant Sci ; 12: 645218, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679862

RESUMEN

In eukaryotes, the nuclear envelope (NE) encloses chromatin and separates it from the rest of the cell. The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex physically bridges across the NE, linking nuclear and cytoplasmic components. In plants, these LINC complexes are beginning to be ascribed roles in cellular and nuclear functions, including chromatin organization, regulation of nuclei shape and movement, and cell division. Homologs of core LINC components, KASH and SUN proteins, have previously been identified in maize. Here, we characterized the presumed LINC-associated maize nucleoskeletal proteins NCH1 and NCH2, homologous to members of the plant NMCP/CRWN family, and MKAKU41, homologous to AtKAKU4. All three proteins localized to the nuclear periphery when transiently and heterologously expressed as fluorescent protein fusions in Nicotiana benthamiana. Overexpression of MKAKU41 caused dramatic changes in the organization of the nuclear periphery, including nuclear invaginations that stained positive for non-nucleoplasmic markers of the inner and outer NE membranes, and the ER. The severity of these invaginations was altered by changes in LINC connections and the actin cytoskeleton. In maize, MKAKU41 appeared to share genetic functions with other LINC components, including control of nuclei shape, stomatal complex development, and pollen viability. Overall, our data show that NCH1, NCH2, and MKAKU41 have characteristic properties of LINC-associated plant nucleoskeletal proteins, including interactions with NE components suggestive of functions at the nuclear periphery that impact the overall nuclear architecture.

18.
BMC Plant Biol ; 10: 269, 2010 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-21143845

RESUMEN

BACKGROUND: The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84) domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear envelope, telomere-led nuclear reorganization during meiosis, and karyogamy. RESULTS: We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5), which fell into two classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses). The first (ZmSUN1, 2), here designated canonical C-terminal SUN-domain (CCSD), includes structural homologs of the animal and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5), here designated plant-prevalent mid-SUN 3 transmembrane (PM3), includes a novel but conserved structural variant SUN-domain protein gene class. Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but low-level expression (50-200 parts per ten million) in multiple tissues for all the others. Cloning and characterization of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at the nuclear periphery. CONCLUSIONS: The maize genome encodes and expresses at least five different SUN-domain proteins, of which the PM3 subfamily may represent a novel class of proteins with possible new and intriguing roles within the plant nuclear envelope. Expression levels for ZmSUN1-4 are consistent with basic cellular functions, whereas ZmSUN5 expression levels indicate a role in pollen. Models for possible topological arrangements of the CCSD-type and PM3-type SUN-domain proteins are presented.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Western Blotting , ADN Complementario/química , ADN Complementario/genética , Variación Genética , Datos de Secuencia Molecular , Familia de Multigenes , Filogenia , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
19.
PLoS One ; 15(6): e0233971, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32502183

RESUMEN

Hop (Humulus lupulus L.) is known for its use as a bittering agent in beer and has a rich history of cultivation, beginning in Europe and now spanning the globe. There are five wild varieties worldwide, which may have been introgressed with cultivated varieties. As a dioecious species, its obligate outcrossing, non-Mendelian inheritance, and genomic structural variability have confounded directed breeding efforts. Consequently, understanding the hop genome represents a considerable challenge, requiring additional resources. In order to facilitate investigations into the transmission genetics of hop, we report here a tandem repeat discovery pipeline developed using k-mer filtering and dot plot analysis of PacBio long-read sequences from the hop cultivar Apollo. From this we identified 17 new and distinct tandem repeat sequence families, which represent candidates for FISH probe development. For two of these candidates, HuluTR120 and HuluTR225, we produced oligonucleotide FISH probes from conserved regions of and demonstrated their utility by staining meiotic chromosomes from wild hop, var. neomexicanus to address, for example, questions about hop transmission genetics. Collectively, these tandem repeat sequence families represent new resources suitable for development of additional cytogenomic tools for hop research.


Asunto(s)
Genoma de Planta , Genómica/métodos , Humulus/genética , Secuencias Repetidas en Tándem/genética , Genotipo , Hibridación Fluorescente in Situ/métodos , Filogenia , Fitomejoramiento , Prueba de Estudio Conceptual
20.
Genome Biol ; 21(1): 165, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631399

RESUMEN

BACKGROUND: The functional genome of agronomically important plant species remains largely unexplored, yet presents a virtually untapped resource for targeted crop improvement. Functional elements of regulatory DNA revealed through profiles of chromatin accessibility can be harnessed for fine-tuning gene expression to optimal phenotypes in specific environments. RESULT: Here, we investigate the non-coding regulatory space in the maize (Zea mays) genome during early reproductive development of pollen- and grain-bearing inflorescences. Using an assay for differential sensitivity of chromatin to micrococcal nuclease (MNase) digestion, we profile accessible chromatin and nucleosome occupancy in these largely undifferentiated tissues and classify at least 1.6% of the genome as accessible, with the majority of MNase hypersensitive sites marking proximal promoters, but also 3' ends of maize genes. This approach maps regulatory elements to footprint-level resolution. Integration of complementary transcriptome profiles and transcription factor occupancy data are used to annotate regulatory factors, such as combinatorial transcription factor binding motifs and long non-coding RNAs, that potentially contribute to organogenesis, including tissue-specific regulation between male and female inflorescence structures. Finally, genome-wide association studies for inflorescence architecture traits based solely on functional regions delineated by MNase hypersensitivity reveals new SNP-trait associations in known regulators of inflorescence development as well as new candidates. CONCLUSIONS: These analyses provide a comprehensive look into the cis-regulatory landscape during inflorescence differentiation in a major cereal crop, which ultimately shapes architecture and influences yield potential.


Asunto(s)
Ensamble y Desensamble de Cromatina , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inflorescencia/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Genoma de Planta , Estudio de Asociación del Genoma Completo , Inflorescencia/metabolismo , Nucleasa Microcócica , Regiones Promotoras Genéticas , ARN Largo no Codificante/metabolismo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA