Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Calcif Tissue Int ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276238

RESUMEN

We and others have shown that application of high-level mechanical loading promotes the formation of transient plasma membrane disruptions (PMD) which initiate mechanotransduction. We hypothesized that increasing osteocyte cell membrane fragility, by disrupting the cytoskeleton-associated protein ß2-spectrin (Sptbn1), could alter osteocytic responses and bone adaptation to loading in a PMD-related fashion. In MLO-Y4 cells, treatment with the spectrin-disrupting agent diamide or knockdown of Sptbn1 via siRNA increased the number of PMD formed by fluid shear stress. Primary osteocytes from an osteocyte-targeted DMP1-Cre Sptbn1 conditional knockout (CKO) model mimicked trends seen with diamide and siRNA treatment and suggested the creation of larger PMD, which repaired more slowly, for a given level of stimulus. Post-wounding cell survival was impaired in all three models, and calcium signaling responses from the wounded osteocyte were mildly altered in Sptbn1 CKO cultures. Although Sptbn1 CKO mice did not demonstrate an altered skeletal phenotype as compared to WT littermates under baseline conditions, they showed a blunted increase in cortical thickness when subjected to an osteogenic tibial loading protocol as well as evidence of increased osteocyte death (increased lacunar vacancy) in the loaded limb after 2 weeks of loading. The impaired post-wounding cell viability and impaired bone adaptation seen with Sptbn1 disruption support the existence of an important role for Sptbn1, and PMD formation, in osteocyte mechanotransduction and bone adaptation to mechanical loading.

2.
Sensors (Basel) ; 24(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39275584

RESUMEN

A common challenge for exoskeleton control is discerning operator intent to provide seamless actuation of the device with the operator. One way to accomplish this is with joint angle estimation algorithms and multiple sensors on the human-machine system. However, the question remains of what can be accomplished with just one sensor. The objective of this study was to deploy a modular testing approach to test the performance of two joint angle estimation models-a kinematic extrapolation algorithm and a Random Forest machine learning algorithm-when each was informed solely with kinematic gait data from a single potentiometer on an ankle exoskeleton mock-up. This study demonstrates (i) the feasibility of implementing a modular approach to exoskeleton mock-up evaluation to promote continuity between testing configurations and (ii) that a Random Forest algorithm yielded lower realized errors of estimated joint angles and a decreased actuation time than the kinematic model when deployed on the physical device.


Asunto(s)
Algoritmos , Dispositivo Exoesqueleto , Humanos , Fenómenos Biomecánicos/fisiología , Aprendizaje Automático , Marcha/fisiología , Articulación del Tobillo/fisiología , Articulaciones/fisiología
3.
Calcif Tissue Int ; 104(2): 224-234, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30357446

RESUMEN

Osteocytes experience plasma membrane disruptions (PMD) that initiate mechanotransduction both in vitro and in vivo in response to mechanical loading, suggesting that osteocytes use PMD to sense and adapt to mechanical stimuli. PMD repair is crucial for cell survival; antioxidants (e.g., alpha-tocopherol, also known as Vitamin E) promote repair while reactive oxygen species (ROS), which can accumulate during exercise, inhibit repair. The goal of this study was to determine whether depleting Vitamin E in the diet would impact osteocyte survival and bone adaptation with loading. Male CD-1 mice (3 weeks old) were fed either a regular diet (RD) or Vitamin E-deficient diet (VEDD) for up to 11 weeks. Mice from each dietary group either served as sedentary controls with normal cage activity, or were subjected to treadmill exercise (one bout of exercise or daily exercise for 5 weeks). VEDD-fed mice showed more PMD-affected osteocytes (+ 50%) after a single exercise bout suggesting impaired PMD repair following Vitamin E deprivation. After 5 weeks of daily exercise, VEDD mice failed to show an exercise-induced increase in osteocyte PMD formation, and showed signs of increased osteocytic oxidative stress and impaired osteocyte survival. Surprisingly, exercise-induced increases in cortical bone formation rate were only significant for VEDD-fed mice. This result may be consistent with previous studies in skeletal muscle, where myocyte PMD repair failure (e.g., with muscular dystrophy) initially triggers hypertrophy but later leads to widespread degeneration. In vitro, mechanically wounded MLO-Y4 cells displayed increased post-wounding necrosis (+ 40-fold) in the presence of H2O2, which could be prevented by Vitamin E pre-treatment. Taken together, our data support the idea that antioxidant-influenced osteocyte membrane repair is a vital aspect of bone mechanosensation in the osteocytic control of PMD-driven bone adaptation.


Asunto(s)
Membrana Celular/fisiología , Osteocitos/fisiología , Regeneración/fisiología , Deficiencia de Vitamina E/fisiopatología , Vitamina E/metabolismo , Animales , Resorción Ósea/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patología , Permeabilidad de la Membrana Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Masculino , Mecanotransducción Celular/efectos de los fármacos , Mecanotransducción Celular/fisiología , Ratones , Osteocitos/metabolismo , Condicionamiento Físico Animal/fisiología , Vitamina E/farmacología , Deficiencia de Vitamina E/metabolismo , Soporte de Peso/fisiología
4.
Circ Res ; 114(6): 982-92, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24508725

RESUMEN

RATIONALE: Kv1.5 (KCNA5) mediates the ultra-rapid delayed rectifier current that controls atrial action potential duration. Given its atrial-specific expression and alterations in human atrial fibrillation, Kv1.5 has emerged as a promising target for the treatment of atrial fibrillation. A necessary step in the development of novel agents that selectively modulate trafficking pathways is the identification of the cellular machinery controlling Kv1.5 surface density, of which little is yet known. OBJECTIVE: To investigate the role of the unconventional myosin-V (MYO5A and MYO5B) motors in determining the cell surface density of Kv1.5. METHODS AND RESULTS: Western blot analysis showed MYO5A and MYO5B expression in the heart, whereas disruption of endogenous motors selectively reduced IKur current in adult rat cardiomyocytes. Dominant negative constructs and short hairpin RNA silencing demonstrated a role for MYO5A and MYO5B in the surface trafficking of Kv1.5 and connexin-43 but not potassium voltage-gated channel, subfamily H (eag-related), member 2 (KCNH2). Live-cell imaging of Kv1.5-GFP and retrospective labeling of phalloidin demonstrated motility of Kv1.5 vesicles on actin tracts. MYO5A participated in anterograde trafficking, whereas MYO5B regulated postendocytic recycling. Overexpression of mutant motors revealed a selective role for Rab11 in coupling MYO5B to Kv1.5 recycling. CONCLUSIONS: MYO5A and MYO5B control functionally distinct steps in the surface trafficking of Kv1.5. These isoform-specific trafficking pathways determine Kv1.5-encoded IKur in myocytes to regulate repolarizing current and, consequently, cardiac excitability. Therapeutic strategies that manipulate Kv1.5 selective trafficking pathways may prove useful in the treatment of arrhythmias.


Asunto(s)
Membrana Celular/metabolismo , Canal de Potasio Kv1.5/metabolismo , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/fisiología , Miosina Tipo V/fisiología , Miosinas/fisiología , Transporte de Proteínas/fisiología , Citoesqueleto de Actina/fisiología , Animales , Arritmias Cardíacas/fisiopatología , Línea Celular , Conexina 43/análisis , Canal de Potasio ERG1 , Endocitosis , Canales de Potasio Éter-A-Go-Go/análisis , Uniones Comunicantes , Genes Reporteros , Sistema de Conducción Cardíaco/fisiopatología , Transporte Iónico , Canal de Potasio Kv1.5/genética , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Modelos Cardiovasculares , Cadenas Pesadas de Miosina/deficiencia , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/deficiencia , Miosina Tipo V/genética , Miosinas/deficiencia , Miosinas/genética , Potasio/metabolismo , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Unión al GTP rab/fisiología
5.
Drug Discov Today Ther Strateg ; 9(4): e155-e162, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24839449

RESUMEN

An ever-increasing number of people world-wide are developing and suffering from heart failure, and existing therapies, although improved are not ideal. Therefore, innovative treatment strategies are urgently needed. As our understanding of the underlying dysfunction of the myocardium increases, so does our ability to target the mechanisms responsible for heart failure progression. In this review we discuss novel molecular therapies and approaches for the treatment of heart failure. We will focus on the G protein-coupled receptor kinase GRK2, an increasing target for heart failure therapy, based on its important role in disease progression and the therapeutic potential of GRK2 inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA