RESUMEN
Coxiella burnetii, the causative agent of Q fever, is a small, coccoid, Gram-negative strict intracellular pathogen. One of the most common ways of acquiring Q fever is through inhalation of aerosols containing the bacteria. Because C. burnetii is highly infectious, spreads easily through the air, and is very resistant to environmental conditions, it is considered a biological threat. This paper presents the development and validation of a specific real-time polymerase chain reaction (real-time PCR or qPCR) assay for the detection of C. burnetii, based on the amplification of a fragment of the isocitrate dehydrogenase (icd) encoding gene. This real-time PCR is highly specific, reproducible, and sensitive, allowing the detection of as few as 5 genome equivalents (GEs) of C. burnetii per reaction. The method enables a rapid preliminary differentiation among strains, based on a point mutation at nucleotide 745 of the icd gene. The assay was successfully evaluated in environmental soil samples; a limit of detection of 3 × 104 colony forming units per 0.5 g of soil (â¼3 GEs per reaction) was achieved. The newly developed real-time PCR offers a valuable tool for differential detection of C. burnetii strains in environmental soil samples.
Asunto(s)
Coxiella burnetii , Fiebre Q , Humanos , Coxiella burnetii/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Fiebre Q/diagnóstico , Fiebre Q/microbiología , BioensayoRESUMEN
In the present study, we report the development of a real-time PCR assay for the identification of Bacillus anthracis, based on the amplification of a unique chromosomal marker, the E4 sequence, with dual hybridization probes. The assay was evaluated using a panel of ten B. anthracis strains, two B. anthracis isolates from human clinical samples, 12 B. anthracis environmental swabs and 40 non- B. anthracis strains. All 12 B. anthracis strains and clinical isolates were correctly detected, and the method did not show cross-reactions with other micro-organisms. Likewise, the E4 sequence was not found in those strains of B. thuringiensis and B. cereus closely related (homology > 90%) to B. anthracis by computer analysis. On the other hand, this molecular assay showed a high analytical sensitivity, 3.5 genome equivalents per reaction at 95% probability. Furthermore, the real-time PCR assay allowed sequence-specific detection of the amplicon (melting peak with a Tm of 63.5 °C ± 0.5 °C) without post-amplification procedures, which offers an additional advantage over other qPCR assays for B. anthracis detection. Finally, the performance of the method was successfully evaluated in 12 environmental samples. In summary, we have developed a rapid and specific method for the molecular identification of Bacillus anthracis in environmental samples.
Asunto(s)
Bacillus anthracis/aislamiento & purificación , Cromosomas Bacterianos/genética , Sondas de ADN/genética , ADN Bacteriano/aislamiento & purificación , Microbiología Ambiental , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Bacillus anthracis/genética , Bacillus cereus/genética , Bacillus cereus/aislamiento & purificación , Bacillus thuringiensis/genética , Bacillus thuringiensis/aislamiento & purificación , ADN Bacteriano/genética , Humanos , Técnicas de Diagnóstico Molecular , Sensibilidad y Especificidad , Análisis de Secuencia de ADNRESUMEN
The geographical origin of a major present-day phylogenetic group (A branch WNA; A.Br.WNA) of American Bacillus anthracis is controversial. One hypothesis postulated that the anthrax pathogen reached North America via a then-existing land bridge from northeastern Asia thousands of years ago. A competing hypothesis suggested that B. anthracis was introduced to America a couple of hundred years ago, related to European colonization. The latter view is strongly supported by genomic analysis of a group of French B. anthracis isolates that are phylogenetically closely related to the North American strains of the A branch A.Br.WNA clade. In addition, three West African strains also belong to this relationship group. Recently, we have added a Spanish strain to these close relatives of the WNA lineage of American B. anthracis. Nevertheless, the diversity of Spanish B. anthracis remains largely unexplored, and phylogenetic links to European or American relatives are not well resolved. Here, we genome sequenced and characterized 29 new B. anthracis isolates (yielding 18 unique genotypes) from outbreaks in west central and central Spain in 2021. Applying comparative chromosomal analysis, we placed the chromosomes of these isolates within the established phylogeny of the A.Br.008/009 (A.Br.TEA) canonical SNP group. From this analysis, a new sub-clade, named A.Br.11/ESPc, emerged that constitutes a sister group of American A.Br.WNA.
RESUMEN
As part of the Biology and Mars Experiment (BIOMEX; ILSRA 2009-0834), samples of the lichen Circinaria gyrosa were placed on the exposure platform EXPOSE-R2, on the International Space Station (ISS) and exposed to space and to a Mars-simulated environment for 18 months (2014-2016) to study: (1) resistance to space and Mars-like conditions and (2) biomarkers for use in future space missions (Exo-Mars). When the experiment returned (June 2016), initial analysis showed rapid recovery of photosystem II activity in the samples exposed exclusively to space vacuum and a Mars-like atmosphere. Significantly reduced recovery levels were observed in Sun-exposed samples, and electron and fluorescence microscopy (transmission electron microscope and field emission scanning electron microscope) data indicated that this was attributable to the combined effects of space radiation and space vacuum, as unirradiated samples exhibited less marked morphological changes compared with Sun-exposed samples. Polymerase chain reaction analyses confirmed that there was DNA damage in lichen exposed to harsh space and Mars-like environmental conditions, with ultraviolet radiation combined with space vacuum causing the most damage. These findings contribute to the characterization of space- and Mars-resistant organisms that are relevant to Mars habitability.
Asunto(s)
Exobiología , Líquenes/fisiología , Marte , Vuelo Espacial , Supervivencia Celular , Daño del ADN , Líquenes/citología , Líquenes/genética , Líquenes/ultraestructura , Complejo de Proteína del Fotosistema II/metabolismo , Técnica del ADN Polimorfo Amplificado Aleatorio , EspañaRESUMEN
The largest phylogenetic lineage known to date of the anthrax pathogen Bacillus anthracis is the wide-spread, so-called Trans-Eurasian clade systematically categorized as the A.Br.008/009 group sharing two defining canonical single-nucleotide polymorphisms (canSNP). In this study, we genome-sequenced a collection of 35 B. anthracis strains of this clade, derived from human infections, animal outbreaks or soil, mostly from European countries isolated between 1936 and 2008. The new data were subjected to comparative chromosomal analysis, together with 75 B. anthracis genomes available in public databases, and the relative placements of these isolates were determined within the global phylogeny of the A.Br.008/009 canSNP group. From this analysis, we have detected 3754 chromosomal SNPs, allowing the assignation of the new chromosomal sequences to established sub-clades, to define new sub-clades, such as two new Spanish, one Bulgarian or one German group(s), or to introduce orphan lineages. SNP-based results were compared with that of a multilocus variable number of tandem repeat analysis (MLVA). This analysis indicated that MLVA typing might provide additional information in cases when genomics yields identical genotypes or shows only minor differences. Introducing the delayed mismatch amplification assay (DMAA) PCR-analysis, we developed a cost-effective method to interrogate for a set of ten phylogenetically informative SNPs within genomes of A.Br.008/009 canSNP clade strains of B. anthracis. By this approach, additional 32 strains could be assigned to five of ten defined clades.