Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Circulation ; 144(20): 1629-1645, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34636652

RESUMEN

BACKGROUND: PALMD (palmdelphin) belongs to the family of paralemmin proteins implicated in cytoskeletal regulation. Single nucleotide polymorphisms in the PALMD locus that result in reduced expression are strong risk factors for development of calcific aortic valve stenosis and predict severity of the disease. METHODS: Immunodetection and public database screening showed dominant expression of PALMD in endothelial cells (ECs) in brain and cardiovascular tissues including aortic valves. Mass spectrometry, coimmunoprecipitation, and immunofluorescent staining allowed identification of PALMD partners. The consequence of loss of PALMD expression was assessed in small interferring RNA-treated EC cultures, knockout mice, and human valve samples. RNA sequencing of ECs and transcript arrays on valve samples from an aortic valve study cohort including patients with the single nucleotide polymorphism rs7543130 informed about gene regulatory changes. RESULTS: ECs express the cytosolic PALMD-KKVI splice variant, which associated with RANGAP1 (RAN GTP hydrolyase activating protein 1). RANGAP1 regulates the activity of the GTPase RAN and thereby nucleocytoplasmic shuttling via XPO1 (Exportin1). Reduced PALMD expression resulted in subcellular relocalization of RANGAP1 and XPO1, and nuclear arrest of the XPO1 cargoes p53 and p21. This indicates an important role for PALMD in nucleocytoplasmic transport and consequently in gene regulation because of the effect on localization of transcriptional regulators. Changes in EC responsiveness on loss of PALMD expression included failure to form a perinuclear actin cap when exposed to flow, indicating lack of protection against mechanical stress. Loss of the actin cap correlated with misalignment of the nuclear long axis relative to the cell body, observed in PALMD-deficient ECs, Palmd-/- mouse aorta, and human aortic valve samples derived from patients with calcific aortic valve stenosis. In agreement with these changes in EC behavior, gene ontology analysis showed enrichment of nuclear- and cytoskeleton-related terms in PALMD-silenced ECs. CONCLUSIONS: We identify RANGAP1 as a PALMD partner in ECs. Disrupting the PALMD/RANGAP1 complex alters the subcellular localization of RANGAP1 and XPO1, and leads to nuclear arrest of the XPO1 cargoes p53 and p21, accompanied by gene regulatory changes and loss of actin-dependent nuclear resilience. Combined, these consequences of reduced PALMD expression provide a mechanistic underpinning for PALMD's contribution to calcific aortic valve stenosis pathology.


Asunto(s)
Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Proteínas de la Membrana/genética , Estrés Mecánico , Anciano , Animales , Comunicación Celular/genética , Línea Celular , Movimiento Celular/genética , Células Cultivadas , Biología Computacional/métodos , Bases de Datos Genéticas , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ontología de Genes , Humanos , Inmunohistoquímica , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Persona de Mediana Edad , Transporte de Proteínas
2.
Nucleic Acids Res ; 45(1): 231-243, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-27701075

RESUMEN

All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system-gene conversion, somatic hypermutation and class switch recombination-require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries.


Asunto(s)
Linfocitos B/inmunología , Regiones Determinantes de Complementariedad/inmunología , Roturas del ADN de Doble Cadena , Reparación del ADN/inmunología , Conversión Génica , Cadenas Ligeras de Inmunoglobulina/genética , Animales , Linfocitos B/citología , Secuencia de Bases , Línea Celular Tumoral , Pollos , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/genética , Citidina Desaminasa/deficiencia , Citidina Desaminasa/genética , Citidina Desaminasa/inmunología , Roturas del ADN de Cadena Simple , Desoxirribonucleasas de Localización Especificada Tipo II/genética , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Cambio de Clase de Inmunoglobulina , Cadenas Ligeras de Inmunoglobulina/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Res Sq ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562878

RESUMEN

The germinal center (GC) dark zone (DZ) and light zone (LZ) regions spatially separate expansion and diversification from selection of antigen-specific B-cells to ensure antibody affinity maturation and B cell memory. The DZ and LZ differ significantly in their immune composition despite the lack of a physical barrier, yet the determinants of this polarization are poorly understood. This study provides novel insights into signals controlling asymmetric T-cell distribution between DZ and LZ regions. We identify spatially-resolved DNA damage response and chromatin compaction molecular features that underlie DZ T-cell exclusion. The DZ spatial transcriptional signature linked to T-cell immune evasion clustered aggressive Diffuse Large B-cell Lymphomas (DLBCL) for differential T cell infiltration. We reveal the dependence of the DZ transcriptional core signature on the ATR kinase and dissect its role in restraining inflammatory responses contributing to establishing an immune-repulsive imprint in DLBCL. These insights may guide ATR-focused treatment strategies bolstering immunotherapy in tumors marked by DZ transcriptional and chromatin-associated features.

4.
Curr Opin Cell Biol ; 84: 102222, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37619290

RESUMEN

The mechanical properties of the nucleus influence different cellular and nuclear functions and have relevant implications for several human diseases. The nucleus protects genetic information while acting as a mechano-sensory hub in response to internal and external forces. Cells have evolved mechano-transduction signaling to respond to physical cellular and nuclear perturbations and adopted a multitude of molecular pathways to maintain nuclear shape stability and prevent morphological abnormalities of the nucleus. Here we describe those key biological processes that control nuclear mechanics and discuss emerging perspectives on the mechanobiology of the nucleus as a diagnostic tool and clinical target.


Asunto(s)
Núcleo Celular , Transducción de Señal , Humanos , Biofisica
5.
Cell Rep ; 42(12): 113555, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38088930

RESUMEN

Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.


Asunto(s)
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cromatina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteómica , Proteínas de Unión al ADN/metabolismo , Fosforilación , Daño del ADN , Citoesqueleto/metabolismo
6.
Commun Biol ; 5(1): 882, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030322

RESUMEN

Chromatin metabolism is frequently altered in cancer cells and facilitates cancer development. While cancer cells produce large amounts of histones, the protein component of chromatin packaging, during replication, the potential impact of histone density on cancer biology has not been studied systematically. Here, we show that altered histone density affects global histone acetylation, histone deactylase inhibitor sensitivity and altered mitochondrial proteome composition. We present estimates of nuclear histone densities in 373 cancer cell lines, based on Cancer Cell Line Encyclopedia data, and we show that a known histone regulator, HMGB1, is linked to histone density aberrations in many cancer cell lines. We further identify an E3 ubiquitin ligase interactor, DCAF6, and a mitochondrial respiratory chain assembly factor, CHCHD4, as histone modulators. As systematic characterization of histone density aberrations in cancer cell lines, this study provides approaches and resources to investigate the impact of histone density on cancer biology.


Asunto(s)
Histonas , Neoplasias , Acetilación , Cromatina , Histona Acetiltransferasas , Proteoma
7.
Nat Commun ; 11(1): 4828, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973141

RESUMEN

ATR responds to mechanical stress at the nuclear envelope and mediates envelope-associated repair of aberrant topological DNA states. By combining microscopy, electron microscopic analysis, biophysical and in vivo models, we report that ATR-defective cells exhibit altered nuclear plasticity and YAP delocalization. When subjected to mechanical stress or undergoing interstitial migration, ATR-defective nuclei collapse accumulating nuclear envelope ruptures and perinuclear cGAS, which indicate loss of nuclear envelope integrity, and aberrant perinuclear chromatin status. ATR-defective cells also are defective in neuronal migration during development and in metastatic dissemination from circulating tumor cells. Our findings indicate that ATR ensures mechanical coupling of the cytoskeleton to the nuclear envelope and accompanying regulation of envelope-chromosome association. Thus the repertoire of ATR-regulated biological processes extends well beyond its canonical role in triggering biochemical implementation of the DNA damage response.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Núcleo Celular/metabolismo , Estrés Mecánico , Citoesqueleto de Actina , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Encéfalo , Cromatina , Citoplasma , Citoesqueleto/metabolismo , Daño del ADN , Ratones Noqueados , Metástasis de la Neoplasia , Neurogénesis , Membrana Nuclear/metabolismo
8.
Nat Commun ; 8(1): 2118, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29242514

RESUMEN

Phosphoinositide lipids (PPIs) are enriched in the nucleus and are accumulated at DNA damage sites. Here, we investigate roles of nuclear PPIs in DNA damage response by sequestering specific PPIs with the expression of nuclear-targeted PH domains, which inhibits recruitment of Ataxia telangiectasia and Rad3-related protein (ATR) and reduces activation of Chk1. PPI-binding domains rapidly (< 1 s) accumulate at damage sites with local enrichment of PPIs. Accumulation of PIP3 in complex with the nuclear receptor protein, SF1, at damage sites requires phosphorylation by inositol polyphosphate multikinase (IPMK) and promotes nuclear actin assembly that is required for ATR recruitment. Suppressed ATR recruitment/activation is confirmed with latrunculin A and wortmannin treatment as well as IPMK or SF1 depletion. Other DNA repair pathways involving ATM and DNA-PKcs are unaffected by PPI sequestration. Together, these findings reveal that nuclear PPI metabolism mediates an early damage response through the IPMK-dependent pathway to specifically recruit ATR.


Asunto(s)
Daño del ADN , Fosfatidilinositoles/metabolismo , Transducción de Señal , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Línea Celular , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Reparación del ADN , Humanos , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Interferencia de ARN , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo
9.
Cell Rep ; 18(12): 2868-2879, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28329680

RESUMEN

We have previously found that UV irradiation promotes RNA polymerase II (RNAPII) hyperphosphorylation and subsequent changes in alternative splicing (AS). We show now that UV-induced DNA damage is not only necessary but sufficient to trigger the AS response and that photolyase-mediated removal of the most abundant class of pyrimidine dimers (PDs) abrogates the global response to UV. We demonstrate that, in keratinocytes, RNAPII is the target, but not a sensor, of the signaling cascade initiated by PDs. The UV effect is enhanced by inhibition of gap-filling DNA synthesis, the last step in the nucleotide excision repair pathway (NER), and reduced by the absence of XPE, the main NER sensor of PDs. The mechanism involves activation of the protein kinase ATR that mediates the UV-induced RNAPII hyperphosphorylation. Our results define the sequence UV-PDs-NER-ATR-RNAPII-AS as a pathway linking DNA damage repair to the control of both RNAPII phosphorylation and AS regulation.


Asunto(s)
Empalme Alternativo/genética , Reparación del ADN , Dímeros de Pirimidina/metabolismo , Rayos Ultravioleta , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , ADN/metabolismo , Reparación del ADN/genética , Humanos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Fosforilación/efectos de la radiación , ARN Polimerasa II/metabolismo , Piel/citología , Piel/efectos de la radiación , Transcripción Genética/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA