Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2227, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-38278825

RESUMEN

Fluid bolus therapy (FBT) is fundamental to the management of circulatory shock in critical care but balancing the benefits and toxicities of FBT has proven challenging in individual patients. Improved predictors of the hemodynamic response to a fluid bolus, commonly referred to as a fluid challenge, are needed to limit non-beneficial fluid administration and to enable automated clinical decision support and patient-specific precision critical care management. In this study we retrospectively analyzed data from 394 fluid boluses from 58 pigs subjected to either hemorrhagic or distributive shock. All animals had continuous blood pressure and cardiac output monitored throughout the study. Using this data, we developed a machine learning (ML) model to predict the hemodynamic response to a fluid challenge using only arterial blood pressure waveform data as the input. A Random Forest binary classifier referred to as the ML fluid responsiveness algorithm (MLFRA) was trained to detect fluid responsiveness (FR), defined as a ≥ 15% change in cardiac stroke volume after a fluid challenge. We then compared its performance to pulse pressure variation, a commonly used metric of FR. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), confusion matrix metrics, and calibration curves plotting predicted probabilities against observed outcomes. Across multiple train/test splits and feature selection methods designed to assess performance in the setting of small sample size conditions typical of large animal experiments, the MLFRA achieved an average AUROC, recall (sensitivity), specificity, and precision of 0.82, 0.86, 0.62. and 0.76, respectively. In the same datasets, pulse pressure variation had an AUROC, recall, specificity, and precision of 0.73, 0.91, 0.49, and 0.71, respectively. The MLFRA was generally well-calibrated across its range of predicted probabilities and appeared to perform equally well across physiologic conditions. These results suggest that ML, using only inputs from arterial blood pressure monitoring, may substantially improve the accuracy of predicting FR compared to the use of pulse pressure variation. If generalizable, these methods may enable more effective, automated precision management of critically ill patients with circulatory shock.


Asunto(s)
Presión Arterial , Choque , Humanos , Porcinos , Animales , Estudios Retrospectivos , Respiración Artificial/métodos , Resucitación/métodos , Gasto Cardíaco/fisiología , Hemodinámica/fisiología , Presión Sanguínea , Volumen Sistólico/fisiología , Choque/terapia , Curva ROC
2.
Health Care Sci ; 2(4): 205-222, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38939521

RESUMEN

Background: The association between cancer and venous thromboembolism (VTE) is well-established with cancer patients accounting for approximately 20% of all VTE incidents. In this paper, we have performed a comparison of machine learning (ML) methods to traditional clinical scoring models for predicting the occurrence of VTE in a cancer patient population, identified important features (clinical biomarkers) for ML model predictions, and examined how different approaches to reducing the number of features used in the model impact model performance. Methods: We have developed an ML pipeline including three separate feature selection processes and applied it to routine patient care data from the electronic health records of 1910 cancer patients at the University of California Davis Medical Center. Results: Our ML-based prediction model achieved an area under the receiver operating characteristic curve of 0.778 ± 0.006 (mean ± SD) when trained on a set of 15 features. This result is comparable with the model performance when trained on all features in our feature pool [0.779 ± 0.006 (mean ± SD) with 29 features]. Our result surpasses the most validated clinical scoring system for VTE risk assessment in cancer patients by 16.1%. We additionally found cancer stage information to be a useful predictor after all performed feature selection processes despite not being used in existing score-based approaches. Conclusion: From these findings, we observe that ML can offer new insights and a significant improvement over the most validated clinical VTE risk scoring systems in cancer patients. The results of this study also allowed us to draw insight into our feature pool and identify the features that could have the most utility in the context of developing an efficient ML classifier. While a model trained on our entire feature pool of 29 features significantly outperformed the traditionally used clinical scoring system, we were able to achieve an equivalent performance using a subset of only 15 features through strategic feature selection methods. These results are encouraging for potential applications of ML to predicting cancer-associated VTE in clinical settings such as in bedside decision support systems where feature availability may be limited.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38348358

RESUMEN

Dicrotic Notch (DN), one of the most significant and indicative features of the arterial blood pressure (ABP) waveform, becomes less pronounced and thus harder to identify as a matter of aging and pathological vascular stiffness. Generalizable and automatic DN identification for such edge cases is even more challenging in the presence of unexpected ABP waveform deformations that happen due to internal and external noise sources or pathological conditions that cause hemodynamic instability. We propose a physics-aware approach, named Physiowise (PW), that first employs a cardiovascular model to augment the original ABP waveform and reduce unexpected deformations, then apply a set of predefined rules on the augmented signal to find DN locations. We have tested the proposed method on in-vivo data gathered from 14 pigs under hemorrhage and sepsis study. Our result indicates 52% overall mean error improvement with 16% higher detection accuracy within the lowest permitted error range of 30ms. An additional hybrid methodology is also proposed to allow combining augmentation with any application-specific user-defined rule set.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4424-4427, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892201

RESUMEN

Dicrotic Notch (DN) is a distinctive and clinically significant feature of the arterial blood pressure curve. Its automatic identification has been the focus of many kinds of research using either model-based or rule-based methodologies. However, since DN morphology is quite variant following the patient-specific underlying physiological and pathological conditions, its automatic identification with these methods is challenging. This work proposes a hybrid approach that employs both model-based and rule-based approaches to enhance DN detection's generalizability. We have tested our approach on ABP data gathered from 14 pigs. Our result strongly indicates 36% overall mean error improvement with maximum 52% and -11% accuracy enhancement and degradation in extreme cases.


Asunto(s)
Presión Arterial , Animales , Presión Sanguínea , Humanos , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA