Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Zoo Wildl Med ; 44(3): 799-802, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24063118

RESUMEN

Skin biopsies were collected from free-ranging harbor seals (Phoca vitulina richardii) from central California (n = 53). Microscopic examination of hematoxylin and eosin-stained tissue sections revealed the presence of tightly coiled nematode larvae within the ostia of numerous hair follicles of four seals. Parasites were characterized by paired lateral alae, platymyarian musculature, and an indistinct, uninucleate digestive tract. Mild chronic superficial dermatitis and perifolliculitis were evident microscopically in association with the intrafollicular parasites. Histomorphologic features of the larvae and their presence within hair follicles are consistent with previous reports of the facultative nematode parasite Pelodera strongyloides. This is the first published report of P. strongyloides infection in any marine mammal. This parasite may be acquired by marine mammals through close contact with soil or decaying organic material and should be considered as a potential differential diagnosis for dermatitis in marine mammals that use terrestrial resting sites.


Asunto(s)
Nematodos/clasificación , Infecciones por Nematodos/veterinaria , Phoca , Enfermedades Cutáneas Parasitarias/veterinaria , Animales , Animales Salvajes , California/epidemiología , Infecciones por Nematodos/epidemiología , Enfermedades Cutáneas Parasitarias/epidemiología , Enfermedades Cutáneas Parasitarias/parasitología
2.
Conserv Physiol ; 11(1): coad095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107463

RESUMEN

During the evolution of most marine mammals, fur as an insulator has been replaced with more buoyant, energy storing and streamlining blubber. By contrast, the sea otter (Enhydra lutris) relies on insulation from its dense, air-trapping pelage, which differs morphologically between natal and adult stages. In this study, we investigated the ontogenetic changes in thermal function of southern sea otter (Enhydra lutris nereis) pelts in air, in water, and when saturated with crude oil. Pelt thermal conductivity, thickness, and thermal resistance were measured for six age classes: neonate (<1 month), small pup (1-2 months), large pup (3-5 months), juvenile (6 months-1 year), subadult (1-3 years), and adult (4-9 years). Thermal conductivity was significantly higher for pelts in air than in water, with oiled pelts exhibiting the highest values (P < 0.001). Oiled pelts had the lowest thermal resistance, which suggests that regardless of age, all sea otters are vulnerable to the effects of oiling (P < 0.001). To scale up our laboratory findings, we used a volume-specific geometric model of conductive heat transfer for a simplified sea otter body, representing all tested age classes and treatments. Neonates, small pups, and large pups are more vulnerable to the effects of oiling compared with older age classes (P < 0.0001) due to a higher surface area-to-volume ratio. These results are consistent with the known thermal conductance values for adult sea otter pelts, yet this is the first time such thermal differences have been demonstrated in young otters. Overall, body size and age play a more important role in the thermal abilities of sea otters than previously thought.

3.
J Morphol ; 284(9): e21624, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37585225

RESUMEN

Many animals exhibit morphological changes across ontogeny associated with adaptations to their environment. Sea otters (Enhydra lutris) have the densest fur of any animal, which is composed of guard hairs, intermediate hairs, and underhairs. Sea otters live in cold water environments, and their fur traps a layer of air to remain properly insulated, due to morphological adaptations that allow the hairs to trap air when submerged. When a sea otter is born, it has a natal pelage which it will eventually molt and replace with a pelt resembling the adult pelage. Past studies have investigated the morphology and hair density of adult sea otter fur, but these characteristics have not been measured for other age classes, including for the natal pelage. This study quantified ontogenetic changes in hair morphology of southern sea otter (E. lutris nereis) pelts. We measured guard hair length and circularity, shape of cuticular scales on guard hairs and underhairs, and overall hair density for sea otter pelts across six age classes: neonate (<1 month), small pup (1-2 months), large pup (3-5 months), juvenile (6 months-1 year), subadult (1-3 years), and adult (4-9 years). Neonate and small pup pelts had significantly longer guard hairs than older age classes. Natal pelage guard hairs were similarly shaped but smaller in diameter than adult guard hairs. Hairs of the natal pelage had similar cuticular scale patterns as adult hairs, indicating the importance of this structure for the function of the fur. Natal pelage had a lower hair density than the pelage of older age classes, with the adult pelage exhibiting the highest hair density. Overall, the morphological differences between natal and adult pelage in sea otters suggest functional differences that may make sea otter pups more vulnerable to heat loss.


Asunto(s)
Nutrias , Animales , Muda , Aclimatación
4.
Harmful Algae ; 101: 101973, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526183

RESUMEN

Harmful algal blooms produce toxins that bioaccumulate in the food web and adversely affect humans, animals, and entire marine ecosystems. Blooms of the diatom Pseudo-nitzschia can produce domoic acid (DA), a toxin that most commonly causes neurological disease in endothermic animals, with cardiovascular effects that were first recognized in southern sea otters. Over the last 20 years, DA toxicosis has caused significant morbidity and mortality in marine mammals and seabirds along the west coast of the USA. Identifying DA exposure has been limited to toxin detection in biological fluids using biochemical assays, yet measurement of systemic toxin levels is an unreliable indicator of exposure dose or timing. Furthermore, there is little information regarding repeated DA exposure in marine wildlife. Here, the association between long-term environmental DA exposure and fatal cardiac disease was investigated in a longitudinal study of 186 free-ranging sea otters in California from 2001 - 2017, highlighting the chronic health effects of a marine toxin. A novel Bayesian spatiotemporal approach was used to characterize environmental DA exposure by combining several DA surveillance datasets and integrating this with life history data from radio-tagged otters in a time-dependent survival model. In this study, a sea otter with high DA exposure had a 1.7-fold increased hazard of fatal cardiomyopathy compared to an otter with low exposure. Otters that consumed a high proportion of crab and clam had a 2.5- and 1.2-times greater hazard of death due to cardiomyopathy than otters that consumed low proportions. Increasing age is a well-established predictor of cardiac disease, but this study is the first to identify that DA exposure affects the risk of cardiomyopathy more substantially in prime-age adults than aged adults. A 4-year-old otter with high DA exposure had 2.3 times greater risk of fatal cardiomyopathy than an otter with low exposure, while a 10-year old otter with high DA exposure had just 1.2 times greater risk. High Toxoplasma gondii titers also increased the hazard of death due to heart disease 2.4-fold. Domoic acid exposure was most detrimental for prime-age adults, whose survival and reproduction are vital for population growth, suggesting that persistent DA exposure will likely impact long-term viability of this threatened species. These results offer insight into the pervasiveness of DA in the food web and raise awareness of under-recognized chronic health effects of DA for wildlife at a time when toxic blooms are on the rise.


Asunto(s)
Cardiopatías , Nutrias , Animales , Teorema de Bayes , Ecosistema , Ácido Kaínico/análogos & derivados , Estudios Longitudinales
5.
J Wildl Dis ; 52(2): 307-18, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-26967137

RESUMEN

Sea otters ( Enhydra lutris ) have exceptionally high energetic requirements, which nearly double during lactation and pup care. Thus, females are extremely vulnerable to caloric insufficiency. Despite a number of compensatory strategies, the metabolic challenge of reproduction culminates in numerous maternal deaths annually. Massive depletion of energy reserves results in a case presentation that we define as end-lactation syndrome (ELS), characterized by moderate to severe emaciation not attributable to a concurrent, independent disease process in females dying during late pup care or postweaning. We compiled detailed data for 108 adult female southern sea otters ( Enhydra lutris nereis) examined postmortem that stranded in California, US, 2005-12, and assessed pathology, reproductive status, and the location and timing of stranding. We introduce simple, grossly apparent, standardized physical criteria to assess reproductive stage for female sea otters. We also describe ELS, examine associated risk factors, and highlight female life history strategies that likely optimize reproduction and survival. Our data suggest that females can reset both the timing and energetic demands of reproduction through fetal loss, pup abandonment, or early weaning as part of specific physiologic checkpoints during each reproductive cycle. Females appear to preload nutritionally during delayed implantation and gestation to increase fitness and reproductive success. We found that ELS was a major cause of death, affecting 56% of enrolled adult females. Peak ELS prevalence occurred in late spring, possibly reflecting the population trend toward fall/winter pupping. Increasing age and number of pregnancies were associated with a higher risk of ELS. Although the proportion of ELS females was highest in areas with dense sea otter populations, cases were recovered throughout the range, suggesting that death from ELS is associated with, but not solely caused by, population resource limitation.


Asunto(s)
Metabolismo Energético/fisiología , Lactancia/fisiología , Nutrias , Animales , California , Emaciación , Femenino , Nutrias/fisiología , Reproducción/fisiología , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA