Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 115(5): 853-864, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30131170

RESUMEN

Cell proliferation and contact inhibition play a major role in maintaining epithelial cell homeostasis. Prior experiments have shown that externally applied forces, such as stretch, result in increased proliferation in an E-cadherin force-dependent manner. In this study, the spatial regulation of cell proliferation in large epithelial colonies was examined. Surprisingly, cells at the center of the colony still had increased proliferation as compared to cells in confluent monolayers. E-cadherin forces were found to be elevated for both cells at the edge and center of these larger colonies when compared to confluent monolayers. To determine if high levels of E-cadherin force were necessary to induce proliferation at the center of the colony, a lower-force mutant of E-cadherin was developed. Cells with lower E-cadherin force had significantly reduced proliferation for cells at the center of the colony but minimal differences for cells at the edges of the colony. Similarly, increasing substrate stiffness was found to increase E-cadherin force and increase the proliferation rate across the colony. Taken together, these results show that forces through cell-cell junctions regulate proliferation across large groups of epithelial cells. In addition, an important finding of this study is that junction forces are dynamic and modulate cellular function even in the absence of externally applied loads.


Asunto(s)
Cadherinas/metabolismo , Células Epiteliales/citología , Fenómenos Mecánicos , Animales , Fenómenos Biomecánicos , Cadherinas/genética , Proliferación Celular/genética , Perros , Endocitosis/genética , Leucina/metabolismo , Células de Riñón Canino Madin Darby , Mutación
2.
Biophys J ; 110(1): 34-43, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26745407

RESUMEN

The nucleus of a cell has long been considered to be subject to mechanical force. Despite the observation that mechanical forces affect nuclear geometry and movement, how forces are applied onto the nucleus is not well understood. The nuclear LINC (linker of nucleoskeleton and cytoskeleton) complex has been hypothesized to be the critical structure that mediates the transfer of mechanical forces from the cytoskeleton onto the nucleus. Previously used techniques for studying nuclear forces have been unable to resolve forces across individual proteins, making it difficult to clearly establish if the LINC complex experiences mechanical load. To directly measure forces across the LINC complex, we generated a fluorescence resonance energy transfer-based tension biosensor for nesprin-2G, a key structural protein in the LINC complex, which physically links this complex to the actin cytoskeleton. Using this sensor we show that nesprin-2G is subject to mechanical tension in adherent fibroblasts, with highest levels of force on the apical and equatorial planes of the nucleus. We also show that the forces across nesprin-2G are dependent on actomyosin contractility and cell elongation. Additionally, nesprin-2G tension is reduced in fibroblasts from Hutchinson-Gilford progeria syndrome patients. This report provides the first, to our knowledge, direct evidence that nesprin-2G, and by extension the LINC complex, is subject to mechanical force. We also present evidence that nesprin-2G localization to the nuclear membrane is altered under high-force conditions. Because forces across the LINC complex are altered by a variety of different conditions, mechanical forces across the LINC complex, as well as the nucleus in general, may represent an important mechanism for mediating mechanotransduction.


Asunto(s)
Núcleo Celular/metabolismo , Fenómenos Mecánicos , Miosinas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Fenómenos Biomecánicos , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Ratones , Movimiento , Células 3T3 NIH
3.
Nucleus ; 11(1): 194-204, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32816594

RESUMEN

The nuclear lamina is a meshwork of intermediate filament proteins, and lamin A is the primary mechanical protein. An altered splicing of lamin A, known as progerin, causes the disease Hutchinson-Gilford progeria syndrome. Progerin-expressing cells have altered nuclear shapes and stiffened nuclear lamina with microaggregates of progerin. Here, progerin microaggregate inclusions in the lamina are shown to lead to cellular and multicellular dysfunction. We show with Comsol simulations that stiffened inclusions causes redistribution of normally homogeneous forces, and this redistribution is dependent on the stiffness difference and relatively independent of inclusion size. We also show mechanotransmission changes associated with progerin expression in cells under confinement and cells under external forces. Endothelial cells expressing progerin do not align properly with patterning. Fibroblasts expressing progerin do not align properly to applied cyclic force. Combined, these studies show that altered nuclear lamina mechanics and microstructure impacts cytoskeletal force transmission through the cell.


Asunto(s)
Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lamina Tipo A/biosíntesis , Lamina Tipo A/metabolismo , Mecanotransducción Celular , Agregado de Proteínas , Humanos , Lamina Tipo A/genética
4.
Cell Mol Bioeng ; 12(4): 289-300, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31719915

RESUMEN

INTRODUCTION: Cell stretch is a method which can rapidly apply mechanical force through cell-matrix and cell-cell adhesions and can be utilized to better understand underlying biophysical questions related to intracellular force transmission and mechanotransduction. METHODS: 3D printable stretching devices suitable for live-cell fluorescent imaging were designed using finite element modeling and validated experimentally. These devices were then used along with FRET based nesprin-2G force sensitive biosensors as well as live cell fluorescent staining to understand how the nucleus responds to externally applied mechanical force in cells with both intact LINC (linker of nucleoskeleton and cytoskeleton) complex and cells with the LINC complex disrupted using expression of dominant negative KASH protein. RESULTS: The devices were shown to provide a larger strain ranges (300% uniaxial and 60% biaxial) than currently available commercial or academic designs we are aware of. Under uniaxial deformation, the deformation of the nucleus of NIH 3T3 cells per unit of imposed cell strain was shown to be approximately 50% higher in control cells compared to cells with a disrupted LINC complex. Under biaxial deformation, MDCK II cells showed permanent changes in the nuclear morphology as well as actin organization upon unloading, indicating that failure, plastic deformation, or remodeling of the cytoskeleton is occurring in response to the applied stretch. CONCLUSION: Development and open distribution of low-cost, 3D-printable uniaxial and biaxial cell stretching devices compatible with live-cell fluorescent imaging allows a wider range of researchers to investigate mechanical influences on biological questions with only a minimal investment of resources.

5.
J Vis Exp ; (122)2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28448008

RESUMEN

The LINC complex has been hypothesized to be the critical structure that mediates the transfer of mechanical forces from the cytoskeleton to the nucleus. Nesprin-2G is a key component of the LINC complex that connects the actin cytoskeleton to membrane proteins (SUN domain proteins) in the perinuclear space. These membrane proteins connect to lamins inside the nucleus. Recently, a Förster Resonance Energy Transfer (FRET)-force probe was cloned into mini-Nesprin-2G (Nesprin-TS (tension sensor)) and used to measure tension across Nesprin-2G in live NIH3T3 fibroblasts. This paper describes the process of using Nesprin-TS to measure LINC complex forces in NIH3T3 fibroblasts. To extract FRET information from Nesprin-TS, an outline of how to spectrally unmix raw spectral images into acceptor and donor fluorescent channels is also presented. Using open-source software (ImageJ), images are pre-processed and transformed into ratiometric images. Finally, FRET data of Nesprin-TS is presented, along with strategies for how to compare data across different experimental groups.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Fenómenos Mecánicos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Animales , Fenómenos Biomecánicos , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Ratones , Células 3T3 NIH , Imagen Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA