Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Chemistry ; 29(30): e202300428, 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-36916635

RESUMEN

Heterocyclic dimers consisting of combinations of butterfly-shaped phenothiazine (PTZ) and its chemically oxidized form phenothiazine-5,5-dioxide (PTZ(SO2 )) have been synthesized. A twist is imposed across the dimers by ortho-substituents including methyl ethers, sulfides and sulfones. X-ray crystallography, cyclic voltammetry and optical spectroscopy, underpinned by computational studies, have been employed to study the interplay between the oxidation state, conformational restriction, and emission mechanisms including thermally activated delayed fluorescence (TADF) and room temperature phosphorescence (RTP). While the PTZ(SO2 ) dimers are simple fluorophores, the presence of PTZ induces triplet-mediated emission with a mixed PTZ-PTZ(SO2 ) dimer displaying concentration dependent hallmarks of both TADF and RTP.

2.
Nat Mater ; 20(2): 175-180, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32958877

RESUMEN

Commercial carbazole has been widely used to synthesize organic functional materials that have led to recent breakthroughs in ultralong organic phosphorescence1, thermally activated delayed fluorescence2,3, organic luminescent radicals4 and organic semiconductor lasers5. However, the impact of low-concentration isomeric impurities present within commercial batches on the properties of the synthesized molecules requires further analysis. Here, we have synthesized highly pure carbazole and observed that its fluorescence is blueshifted by 54 nm with respect to commercial samples and its room-temperature ultralong phosphorescence almost disappears6. We discover that such differences are due to the presence of a carbazole isomeric impurity in commercial carbazole sources, with concentrations <0.5 mol%. Ten representative carbazole derivatives synthesized from the highly pure carbazole failed to show the ultralong phosphorescence reported in the literature1,7-15. However, the phosphorescence was recovered by adding 0.1 mol% isomers, which act as charge traps. Investigating the role of the isomers may therefore provide alternative insights into the mechanisms behind ultralong organic phosphorescence1,6-18.


Asunto(s)
Carbazoles/química , Carbazoles/síntesis química , Temperatura
3.
Chemistry ; 27(21): 6545-6556, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33560550

RESUMEN

A series of four heterocyclic dimers has been synthesized, with twisted geometries imposed across the central linking bond by ortho-alkoxy chains. These include two isomeric bicarbazoles, a bis(dibenzothiophene-S,S-dioxide) and a bis(thioxanthene-S,S-dioxide). Spectroscopic and electrochemical methods, supported by density functional theory, have given detailed insights into how para- vs. meta- vs. broken conjugation, and electron-rich vs. electron-poor heterocycles impact the HOMO-LUMO gap and singlet and triplet energies. Crucially for applications as OLED hosts, the triplet energy (ET ) of these molecules was found to vary significantly between dilute polymer films and neat films, related to conformational demands of the molecules in the solid state. One of the bicarbazole species shows a variation in ET of 0.24 eV in the different media-sufficiently large to "make-or-break" an OLED device-with similar discrepancies found between neat films and frozen solution measurements of other previously reported OLED hosts. From consolidated optical and optoelectronic investigations of different host/dopant combinations, we identify that only the lower ET values measured in neat films give a reliable indicator of host/guest compatibility. This work also provides new molecular design rules for obtaining very high ET materials and controlling their HOMO and LUMO energies.

4.
Chemistry ; 27(71): 17921-17927, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34705302

RESUMEN

A series of cationic and neutral p-Br and p-NO2 pyridine substituted Eu(III) and Gd(III) coordination complexes serve as versatile synthetic intermediates. Nucleophilic aromatic substitution occurs readily at the para position under mild conditions, allowing C-N and C-C bond forming reactions to take place, permitting the introduction of azide, amino and alkynyl substituents. For Eu(III) complexes, this approach allows late stage tuning of absorption and emission spectral properties, exemplified by the lowering of the energy of an LMCT transition accompanied by a reduction in the Eu-Npy bond length. Additionally, these complexes provide direct access to the corresponding Eu(II) analogues. With the Gd(III) series, the nature of the p-substituent does not significantly change the EPR properties (linewidth, relaxation times), as required for their development as EPR spin probes that can be readily conjugated to biomolecules under mild conditions.


Asunto(s)
Complejos de Coordinación , Elementos de la Serie de los Lantanoides , Piridinas
5.
J Org Chem ; 86(1): 429-445, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33251794

RESUMEN

The synthetic methodology to covalently link donors to form cyclophane-based thermally activated delayed fluorescence (TADF) molecules is presented. These are the first reported examples of TADF cyclophanes with "electronically innocent" bridges between the donor units. Using a phenothiazine-dibenzothiophene-S,S-dioxide donor-acceptor-donor (D-A-D) system, the two phenothiazine (PTZ) donor units were linked by three different strategies: (i) ester condensation, (ii) ether synthesis, and (iii) ring closing metathesis. Detailed X-ray crystallographic, photophysical and computational analyses show that the cyclophane molecular architecture alters the conformational distribution of the PTZ units, while retaining a certain degree of rotational freedom of the intersegmental D-A axes that is crucial for efficient TADF. Despite their different structures, the cyclophanes and their nonbridged precursors have similar photophysical properties since they emit through similar excited states resulting from the presence of the equatorial conformation of their PTZ donor segments. In particular, the axial-axial conformations, known to be detrimental to the TADF process, are suppressed by linking the PTZ units to form a cyclophane. The work establishes a versatile linking strategy that could be used in further functionalization while retaining the excellent photophysical properties of the parent D-A-D system.

6.
J Am Chem Soc ; 142(44): 18769-18781, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-33084308

RESUMEN

There are notably few literature reports of electron donor-acceptor oligoynes, even though they offer unique opportunities for studying charge transport through "all-carbon" molecular bridges. In this context, the current study focuses on a series of carbazole-(C≡C)n-2,5-diphenyl-1,3,4-oxadiazoles (n = 1-4) as conjugated π-systems in general and explores their photophysical properties in particular. Contrary to the behavior of typical electron donor-acceptor systems, for these oligoynes, the rates of charge recombination after photoexcitation increase with increasing electron donor-acceptor distance. To elucidate this unusual performance, we conducted detailed photophysical and time-dependent density functional theory investigations. Significant delocalization of the molecular orbitals along the bridge indicates that the bridging states come into resonance with either the electron donor or acceptor, thereby accelerating the charge transfer. Moreover, the calculated bond lengths reveal a reduction in bond-length alternation upon photoexcitation, indicating significant cumulenic character of the bridge in the excited state. In short, strong vibronic coupling between the electron-donating N-arylcarbazoles and the electron-accepting 1,3,4-oxadiazoles accelerates the charge recombination as the oligoyne becomes longer.

7.
Angew Chem Int Ed Engl ; 59(2): 882-889, 2020 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-31714641

RESUMEN

As the field of molecular-scale electronics matures and the prospect of devices incorporating molecular wires becomes more feasible, it is necessary to progress from the simple anchor groups used in fundamental conductance studies to more elaborate anchors designed with device stability in mind. This study presents a series of oligo(phenylene-ethynylene) wires with one tetrapodal anchor and a phenyl or pyridyl head group. The new anchors are designed to bind strongly to gold surfaces without disrupting the conductance pathway of the wires. Conductive probe atomic force microscopy (cAFM) was used to determine the conductance of self-assembled monolayers (SAMs) of the wires in Au-SAM-Pt and Au-SAM-graphene junctions, from which the conductance per molecule was derived. For tolane-type wires, mean conductances per molecule of up to 10-4.37  G0 (Pt) and 10-3.78  G0 (graphene) were measured, despite limited electronic coupling to the Au electrode, demonstrating the potential of this approach. Computational studies of the surface binding geometry and transport properties rationalise and support the experimental results.

8.
Chemistry ; 25(24): 6212-6225, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30861590

RESUMEN

A zinc-selective probe based on a set of rare earth complexes of a modified DO3A macrocyclic ligand incorporating a tris-pyridylamine (TPA) moiety has been structurally characterised in solution and in the solid-state. One pyridine group possesses a tert-butyl substituent to serve as an NMR reporter group. The mono-capped square-antiprismatic Dy complex has a long bond (2.83 Å) to an apical N atom (pKa 5.70 Eu) and binds to one water molecule on zinc binding. Zinc binding is reversible and involves all of the exocyclic ligand N donors; it is signalled by large (ratiometric) changes in Eu emission intensity, and by dramatic changes in the size (>50 ppm) and sign of the chemical shift of the paramagnetically shifted tBu resonances in Tb, Dy and Tm complexes. Slow trans-metallation was observed, leading to formation of an unusual di-zinc species in which one zinc ion is seven-coordinate and the other is six-coordinate.

9.
Chemistry ; 25(16): 4017-4024, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30680824

RESUMEN

To study pnictogen bonding involving bismuth, flexible accordion-like molecular complexes of the composition [P(C6 H4 -o-CH2 SCH3 )3 BiX3 ], (X=Cl, Br, I) have been synthesised and characterised. The strength of the weak and mainly electrostatic interaction between the Bi and P centres strongly depends on the character of the halogen substituent on bismuth, which is confirmed by single-crystal X-ray diffraction analyses, DFT and ab initio computations. Significantly, 209 Bi-31 P through-space coupling (J=2560 Hz) is observed in solid-state 31 P NMR spectra, which is so far unprecedented in the literature, delivering direct information on the magnitude of this pnictogen interaction.

10.
J Org Chem ; 84(7): 3801-3816, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30912439

RESUMEN

Thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) are known to occur in organic D-A-D and D-A systems where the donor group contains the phenothiazine unit and the acceptor is dibenzothiophene- S, S-dioxide. This study reports the synthesis and characterization of one new D-A and four new D-A-D systems with methoxy groups on the phenothiazine to examine their effect on emission properties in the zeonex matrix. X-ray analysis and highly specialized NMR techniques were used to characterize asymmetric methoxy-substituted derivative 3b, which is chiral at N because of an extremely high flipping barrier at the phenothiazine N atom. Based on hybrid-density functional theory computations, the methoxy substituents tune the relative stabilities of the axial conformers with respect to equatorial conformers of the phenothiazine units, depending on their substitution position. This conformational effect significantly influences both TADF and RTP contributions compared to the parent D-A-D system. It is also demonstrated that the equatorial forms of D-A-D and D-A systems in zeonex exhibit TADF. Additionally, the methoxy groups promote luminescence in D-A-D systems where only axial conformers exist. This work reveals further design opportunities for more efficient TADF and RTP molecules.

11.
Molecules ; 24(22)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744074

RESUMEN

A simple protocol yielding ortho-substituted nitrosophenols from phenols is demonstrated, in the form of copper(II) bis(nitrosophenolato) complexes. The developed methodology was applied to a range of substrates, confirming the role of the copper in both the formation and protection of the challenging 1, 2-substitution pattern. Using polymer supported thiourea, the Cu could be stripped from the complexes and thus enabled the isolation or identification of the uncoordinated ligands and their decomposition products, in yields generally low in line with the intrinsic high reactivity of 2-nitrosophenols. The product complexes are useful intermediates as demonstrated in revisiting a formal [4 + 2] cycloaddition with dimethylacetylene dicarboxylate to synthesise bicyclic products in variable yields, revealing the product has a novel structure different from those previously reported in the literature.


Asunto(s)
Cobre/química , Nitrosación , Compuestos Organometálicos/química , Compuestos Heterocíclicos/química , Ligandos , Modelos Moleculares , Estructura Molecular
12.
Angew Chem Int Ed Engl ; 58(30): 10290-10294, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31140711

RESUMEN

In two closely related series of eight-coordinate lanthanide complexes, a switch in the sign of the dominant ligand field parameter and striking variations in the sign, amplitude and orientation of the main component of the magnetic susceptibility tensor as the Ln3+ ion is permuted conspire to mask modest changes in NMR paramagnetic shifts, but are evident in Yb EPR and Eu emission spectra.

13.
J Org Chem ; 83(19): 12320-12326, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-30247912

RESUMEN

Triply fused 1,3-diazepine derivatives have been obtained by acidic reduction of rotationally locked and sterically hindered nitro groups in the presence of an aldehyde or ketone. The nitro groups are sited on adjacent rings of a dicyanodibenzothiophene-5,5-dioxide, which also displays fully reversible two-electron-accepting behavior. The synthesis, crystallographically determined molecular structures, and aspects of the electronic properties of these new molecules are presented.

14.
J Org Chem ; 83(23): 14431-14442, 2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30376712

RESUMEN

The synthesis of 1-methylphenoxazine via CO2-directed lithiation chemistry is reported. This electron donor was coupled with 2,8-dibromodibenzothiophene- S, S-dioxide with Buchwald-Hartwig chemistry to give a new donor-acceptor-donor charge-transfer fluorescent molecule 1b. X-ray crystal structures and calculations show that the phenoxazinyl groups are coplanar and equatorial (eq) to the acceptor plane in nonmethylated 1a but are pyramidal and axial (ax) in 1b. The bond rotation energy barriers between donor and acceptor groups for 1a and 1b are only 0.13 and 0.19 eV, respectively, from hybrid-DFT computations at the CAM-B3LYP/6-31G(d) level. Many possible conformers are present in solutions and in zeonex. In zeonex, the methyl groups in 1b shift the emission band 0.13 eV higher in energy compared to 1a. Excited state eq-eq and ax-ax geometries were identified with DFT calculations with charge transfer (CT) emission assigned as 1CT(eq) and 1CT(ax) dominating. The lower energy 1CT(eq) contributes to thermally activated delayed fluorescence, whereas the higher energy 1CT(ax) does not. Phenothiazine analogues 2a and 2b also have major fluorescence emissions assigned as 1CT(eq) and 1CT(ax), respectively. 2a and 2b have substantial room temperature phosphorescence (RTP), whereas 1a and 1b do not, highlighting the importance of the sulfur atom in 2a and 2b to obtain RTP emission.

15.
Inorg Chem ; 57(20): 12836-12849, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30256097

RESUMEN

The application of a chiral auxiliary ligand to control the diastereoselectivity in the synthesis of a cyclometalated iridium(III) complex is presented. The diastereomeric iridium(III) complexes 1a and 1b are reported, in which a phenoxyoxazoline auxiliary ligand incorporates a chiral center functionalized with a pendant pentafluorophenyl group. The diastereomers were readily separated, and their structural, electrochemical and photophysical properties are discussed. Solution-state NMR data and X-ray crystal structures establish that the pentafluorophenyl group engages in intramolecular π-π interactions. The X-ray analysis reveals that the two diastereomers display very different modes of intramolecular stacking. The variable-temperature 19F NMR data indicate that rotation of the pendant pentafluorophenyl rings in 1b and 1a is a temperature-dependent process and that there is a smaller energy barrier to rotation in 1b in comparison to 1a. This correlates with variable-temperature photoluminescence data, which show that upon heating the integrated emission intensity is reduced substantially more for 1b than for 1a, which is ascribed to the enhanced rotation in 1b, providing a more easily populated nonradiative pathway in comparison to 1a. These experimental data are supported by computational calculations. Phosphorescent organic light-emitting devices (PhOLEDs) using 1a as the dopant complex give blue-green emission with a high maximum external quantum efficiency (EQEmax) of 25.8% (at ca. 270 cd m-2) and with a low efficiency roll-off to 24.9% at 1000 cd m-2. Our results extend the scope of ligand design for cyclometalated iridium complexes which possess interesting structural and emission properties.

16.
Phys Chem Chem Phys ; 20(17): 11867-11875, 2018 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-29662993

RESUMEN

The synthesis is reported of twelve new symmetrical carbazole dimers in which the carbazole units are linked via 1,4-phenylene spacers. There are two distinct series of compounds based on the position on the carbazole ring where the phenylene spacer is attached: this is either at carbazole C(3) (series 1a-1f) or at C(2) (series 2a-2f). The central phenylene ring is substituted with either two methyl, two methoxy or two cyano substituents which impart an intramolecular torsional angle between the phenylene and carbazole rings, thereby limiting the extent of π-conjugation between the carbazole units, and raising the triplet energies of the molecules to ET 2.6-3.0 eV, as determined from their phosphorescence spectra at 80 K. Structure-property relationships were studied by UV-vis and fluorescence spectroscopy, cyclic voltammetry and theoretical calculations. A notable observation is that substitution at the 2-position of carbazole (linear conjugation) exerts control over the position of the HOMO, while substitution at the 3-position of carbazole (meta conjugation) allows greater control over the LUMO. X-ray crystal structures are reported for two of the bicarbazoles. Compound 2d is shown to be a suitable host for the sky-blue emitter FIrpic in PhOLEDs, with improved device performance compared to CBP as host.

17.
Angew Chem Int Ed Engl ; 57(50): 16407-16411, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30339314

RESUMEN

Chemical modification of phenothiazine-benzophenone derivatives tunes the emission behavior from triplet states by selecting the geometry of the intramolecular charge transfer (ICT) state. A fundamental principle of planar ICT (PICT) and twisted ICT (TICT) is demonstrated to obtain selectively either room temperature phosphorescence (RTP) or thermally activated delayed fluorescence (TADF), respectively. Time-resolved spectroscopy and time-dependent density functional theory (TD-DFT) investigations on polymorphic single crystals demonstrate the roles of PICT and TICT states in the underlying photophysics. This has resulted in a RTP molecule OPM, where the triplet states contribute with 89 % of the luminescence, and an isomeric TADF molecule OMP, where the triplet states contribute with 95 % of the luminescence.

18.
Inorg Chem ; 56(7): 4028-4038, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28293948

RESUMEN

Ytterbium and yttrium complexes of octadentate ligands based on 1,4,7,10-tetraazacyclododecane with a coordinated pyridyl group and either tricarboxylate (L1) or triphosphinate (L2) donors form twisted-square-antiprismatic structures. The former crystallizes in the centrosymmetric group P21/c, with the two molecules related by an inversion center, whereas the latter was found as an unusual kryptoracemate in the chiral space group P21. Pure shift NMR and EXSY spectroscopy allowed the dynamic exchange between the (RRR)-Δ-(δδδδ) and (RRR)-Λ-(λλλλ) TSAP diastereomers of the [Y.L2] complex to be detected. The rate-limiting step in the exchange between Δ and Λ isomers involves cooperative ligand arm rotation, which is much faster for [Ln.L1] than for [Ln.L2]. Detailed analysis of NOESY, COSY, HSQC, and HMBC spectra confirms that the major conformer in solution is (RRR)-Λ-(λλλλ), consistent with crystal structure analysis and DFT calculations. The magnetic susceptibility tensors for [Yb.L1] and [Yb.L2], obtained from a full pseudocontact chemical shift analysis, are very different, in agreement with a CASSCF calculation. The remarkably different pseudocontact shift behavior is explained by the change in the orientation of the pseudocontact shift field, as defined by the Euler angles of the susceptibility tensor.

19.
Chemistry ; 22(30): 10523-32, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27355689

RESUMEN

Reactions of [Rh(κ(2) -O,O-acac)(PMe3 )2 ] (acac=acetylacetonato) and α,ω-bis(arylbutadiynyl)alkanes afford two isomeric types of MC4 metallacycles with very different photophysical properties. As a result of a [2+2] reductive coupling at Rh, 2,5-bis(arylethynyl)rhodacyclopentadienes (A) are formed, which display intense fluorescence (Φ=0.07-0.54, τ=0.2-2.5 ns) despite the presence of the heavy metal atom. Rhodium biphenyl complexes (B), which show exceptionally long-lived (hundreds of µs) phosphorescence (Φ=0.01-0.33) at room temperature in solution, have been isolated as a second isomer originating from an unusual [4+2] cycloaddition reaction and a subsequent ß-H-shift. We attribute the different photophysical properties of isomers A and B to a higher excited state density and a less stabilized T1 state in the biphenyl complexes B, allowing for more efficient intersystem crossing S1 →Tn and T1 →S0 . Control of the isomer distribution is achieved by modification of the bis- (diyne) linker length, providing a fundamentally new route to access photoactive metal biphenyl compounds.

20.
Angew Chem Int Ed Engl ; 55(15): 4707-10, 2016 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-26953905

RESUMEN

Many transition-metal complexes and some metal-free compounds are able to bind carbon monoxide, a molecule which has the strongest chemical bond in nature. However, very few of them have been shown to induce the cleavage of its C-O bond and even fewer are those that are able to transform CO into organic reagents with potential in organic synthesis. This work shows that bis(pinacolato)diboron, B2pin2, reacts with ruthenium carbonyl to give metallic complexes containing borylmethylidyne (CBpin) and diborylethyne (pinBC≡CBpin) ligands and also metal-free perborylated C1 and C2 products, such as C(Bpin)4 and C2 (Bpin)6, respectively, which have great potential as building blocks for Suzuki-Miyaura cross-coupling and other reactions. The use of (13)CO-enriched ruthenium carbonyl has demonstrated that the boron-bound carbon atoms of all of these reaction products arise from CO ligands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA