RESUMEN
Lipocalin-2 (LCN2) is released by several cell types including osteoblasts and adipocytes and has been suggested as a marker of renal dysfunction, metabolic syndrome (MetS) and type 2 diabetes (T2D). Whether LCN2 is linked to these diseases in older women remains unknown. This study investigated whether LCN2 is related to features of MetS and T2D in older women. This cross-sectional study included 705 non-diabetic women (mean age 75.1 ± 2.6 years) for MetS analysis and 76 women (mean age 75.4 ± 2.8 years) with T2D. Total circulating LCN2 levels were analysed using a two-step chemiluminescent microparticle monoclonal immunoassay. MetS was determined by a modified National Cholesterol Education Program Adult Treatment Panel III classification. Multivariable-adjusted logistic regression analysis was used to assess odds ratios between LCN2 quartiles and MetS. Women in the highest LCN2 quartile had approximately 3 times greater risk for MetS compared to women in the lowest quartile (OR 3.05; 95%CI 1.86-5.02). Women with T2D or MetS scores of ≥ 3 had higher LCN2 levels compared to women with a MetS score of 0 (p < 0.05). Higher LCN2 correlated with higher body mass index, fat mass, triglycerides and glycated haemoglobin and lower high-density lipoprotein cholesterol and estimated glomerular filtration rate (p < 0.05). Higher circulating levels of LCN2 are associated with worsened cardio-metabolic risk factors and increased odds of MetS and T2D in older women. Whether it can be used as a biomarker for identifying those at risk for MetS and T2D should be explored further.
Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Anciano , Femenino , Humanos , Colesterol , Estudios Transversales , Diabetes Mellitus Tipo 2/complicaciones , Vida Independiente , Lipocalina 2 , Factores de RiesgoRESUMEN
Osteoglycin (OGN) is a leucine-rich proteoglycan that has been implicated in the regulation of glucose in animal models. However, its relationship with glucose control in humans is unclear. We examined the effect of high-intensity interval exercise (HIIE) and hyperinsulinemic-euglycemic clamp on circulating levels of OGN as well as whether circulating OGN levels are associated with markers of glycemic control and cardio-metabolic health. Serum was analyzed for OGN (ELISA) levels from 9 middle-aged obese men (58.1 ± 2.2 years, body mass index [BMI] = 33.1 ± 1.4 kgâm-2, mean ± SEM) and 9 young men (27.8 ± 1.6 years, BMI = 24.4 ± 0.08 kgâm-2) who previously completed a study involving a euglycemic-hyperinsulinemic clamp at rest and after HIIE (4x4 minutes cycling at approximately 95% peak heart rate (HRpeak), interspersed with 2 minutes of active recovery). Blood pressure, body composition (dual-energy X-ray absorptiometry), and insulin sensitivity (hyperinsulinemic-euglycemic clamp) were assessed. Serum OGN was higher in the young cohort compared with the middle-aged cohort (65.2 ± 10.1 ng/mL versus 36.5 ± 4. 5 ng/mL, p ≤ 0.05). Serum OGN was unaffected by acute HIIE but decreased after the insulin clamp compared with baseline (~-27%, p = 0.01), post-exercise (~-35%, p = 0.01), and pre-clamp (~-32%, p = 0.02) time points, irrespective of age. At baseline, lower circulating OGN levels were associated with increased age, BMI, and fat mass, whereas higher OGN levels were related to lower fasting glucose. Higher OGN levels were associated with a higher glucose infusion rate. Exercise had a limited effect on circulating OGN. The mechanisms by which OGN affects glucose regulation should be explored in the future. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
RESUMEN
Objectives: To investigate the serum, plasma and urine levels of lipocalin-2 (LCN2) variants in healthy humans and their associations with risk factors for cardiometabolic (CMD) and chronic kidney (CKD) diseases. Methods: Fifty-nine males and 41 females participated in the study. Blood and urine were collected following an overnight fasting. LCN2 variants were analyzed using validated in-house ELISA kits. Heart rate, blood pressure, lipids profile, glucose, adiponectin, high-sensitivity C-reactive protein (hsCRP), creatinine, cystatin C, and biomarkers for kidney function were assessed. Results: The levels of hLcn2, C87A and R81E in serum and urine, but not plasma, were significantly higher in men than women. Increased levels of LCN2 variants, as well as their relative ratios, in serum and plasma were positively associated with body mass index, blood pressure, triglyceride and hsCRP (P<0.05). No significant correlations were found between these measures and hLcn2, C87A or R81E in urine. However, LCN2 variants in urine, but not plasma or serum, were correlated with biomarkers of kidney function (P<0.05). Conclusions: Both the serum and plasma levels of LCN2 variants, as well as their ratios are associated with increased cardiometabolic risk, whereas those in urine are correlated with renal dysfunction. LCN2 variants represent promising biomarkers for CMD and CKD.