Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 17(3): e3000171, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30897091

RESUMEN

Highly social insects are characterized by caste dimorphism, with distinct size differences of reproductive organs between fertile queens and the more or less sterile workers. An abundance of nutrition or instruction via diet-specific compounds has been proposed as explanations for the nutrition-driven queen and worker polyphenism. Here, we further explored these models in the honeybee (Apis mellifera) using worker nutrition rearing and a novel mutational screening approach using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) method. The worker nutrition-driven size reduction of reproductive organs was restricted to the female sex, suggesting input from the sex determination pathway. Genetic screens on the sex determination genes in genetic females for size polyphenism revealed that doublesex (dsx) mutants display size-reduced reproductive organs irrespective of the sexual morphology of the organ tissue. In contrast, feminizer (fem) mutants lost the response to worker nutrition-driven size control. The first morphological worker mutants in honeybees demonstrate that the response to nutrition relies on a genetic program that is switched "ON" by the fem gene. Thus, the genetic instruction provided by the fem gene provides an entry point to genetically dissect the underlying processes that implement the size polyphenism.


Asunto(s)
Abejas/enzimología , Abejas/genética , Sistemas CRISPR-Cas/genética , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino
2.
Methods Cell Biol ; 140: 21-47, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28528634

RESUMEN

Array Tomography (AT) is a relatively easy-to-use and yet powerful method to put molecular identity in its full ultrastructural context. Ultrathin sections are stained with fluorophores and then imaged by light and afterward by electron microscopy to obtain a correlated view of a region of interest: its ultrastructure and specific staining. By combining AT with high-pressure freezing for superior structural preservation and superresolution light microscopy, even small subcellular structures can be mapped in 3D. We established protocols for the application of superresolution AT on ultrathin plastic sections of Caenorhabditis elegans, Trypanosoma brucei, and brain tissue of Cataglyphis fortis and Apis mellifera. All steps are described in detail from sample preparation to 3D reconstruction, including species-specific modifications. We thus showcase the versatility of our protocol and give some examples for biological questions that can be answered with this technique. We offer a step-by-step recipe for superresolution AT that can be easily applied for C. elegans, T. brucei, C. fortis, and A. mellifera and adapted for other model systems.


Asunto(s)
Imagenología Tridimensional , Tomografía/métodos , Animales , Caenorhabditis elegans/ultraestructura , Insectos/ultraestructura , Especificidad de la Especie , Fracciones Subcelulares/metabolismo , Trypanosoma brucei brucei/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA