Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sports (Basel) ; 9(2)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672531

RESUMEN

The aim of the present study was to assess the validity of verification phase (VP) testing and a 3 min all-out test to determine critical power (CP) in males with obesity. Nine young adult males with a body mass index (BMI) ≥ 30 kg·m-2 completed a cycle ergometer ramp-style VO2max test, four randomized VP tests at 80, 90, 100, and 105% of maximum wattage attained during the ramp test, and a 3 min all-out test. There was a significant main effect for VO2max across all five tests (p = 0.049). Individually, 8 of 9 participants attained a higher VO2max (L/min) during a VP test compared to the ramp test. A trend (p = 0.06) was observed for VO2max during the 90% VP test (3.61 ± 0.54 L/min) when compared to the ramp test (3.37 ± 0.39 L/min). A significantly higher VO2max (p = 0.016) was found in the VP tests that occurred below 130% of CP wattage (N = 15, VO2max = 3.76 ± 0.52 L/min) compared to those that were above (N = 21, VO2max = 3.36 ± 0.41 L/min). Our findings suggest submaximal VP tests at 90% may elicit the highest VO2max in males with obesity and there may be merit in using % of CP wattage to determine optimal VP intensity.

2.
Sports (Basel) ; 8(12)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322835

RESUMEN

This study was designed to determine the optimal intensity for verification phase testing (VP) in healthy, young adults. Thirty one young, active participants (16 females) completed a cycle ergometer graded exercise test (GXT) VO2max test and 4 VP tests at 80, 90, 100, and 105% of the maximum wattage achieved during the GXT. GXT and VP VO2max values showed a significant test x sex interaction (p = 0.02). The males elicited significantly higher VO2max values during the GXT, 80%, and 90% when compared to the 105%, (105 vs. GXT: p = 0.05; 105% vs. 80%: p < 0.01; 105% vs. 90%: p = 0.02). There were no significant differences in VO2max across the tests in the females (p > 0.05); 80% of the males achieved their highest VP VO2max during a submaximal VP test compared to only 37.5% of the females. A secondary study conducted showed excellent reliability (ICCs > 0.90) and low variation (CVs < 3%) for the 90% VP. Our findings show that a submaximal verification phase intensity is ideal for young healthy males to elicit the highest VO2max during cycle ergometer testing. For females, a range of intensities (80-105%) produce similar VO2max values. However, the 80% VP yields an unnecessarily high time to exhaustion.

3.
Mhealth ; 5: 39, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31620466

RESUMEN

BACKGROUND: The aim of this study was to assess the ability of the Fitbit Charge 2 (FBC2) to accurately estimate VO2max in comparison to both the gold standard VO2max test and a non-exercise VO2max prediction equation. METHODS: Thirty healthy subjects (17 men, 13 women) between the ages of 18 and 35 (age =21.7±3.1 years) were given a FBC2 to wear for seven days and followed instructions on how to obtain a cardio fitness score (CFS). VO2max was measured with an incremental test on the treadmill followed by a verification phase. VO2max was predicted via a non-exercise prediction model (N-Ex) using self-reported physical activity level. RESULTS: Measured VO2max was significantly lower than FBC2 predicted CFS (VO2max =49.91±6.83; CFS =52.53±8.43, P=0.03). N-Ex prediction was significantly lower than CFS but not significantly lower than measured VO2max (N-Ex =48.79±6.32; CFS vs. N-Ex: P=0.01; VO2max vs. N-Ex: P=0.54). Relationships between both VO2max vs. CFS and VO2max vs. N-Ex were good (ICC: VO2max vs. CFS=0.87, VO2max vs. N-Ex =0.87); Bland-Altman analysis indicated consistency of CFS measurement and lack of bias. The coefficient of variation (CV) and mean absolute percent error (MAPE) were greater with CFS than N-Ex (CV: CFS =6.5%±4.1%, N-Ex =5.6%±3.6%; MAPE: CFS =10.2%±6.7%, N-Ex =7.8%±5.0%). Heart rate (HR) estimated by the FBC2 was lower than estimated (Est) HR for pace based on HR extrapolation (FBC2 =155±18 bpm, Est =183±15 bpm, P<0.001). The difference in CFS and VO2max was inversely correlated with the difference in FBC2 HR and Estimated HR (r =-0.45, P<0.001). CONCLUSIONS: The FBC2 shows consistent, unbiased measurement of CFS while overestimating VO2max in healthy men and women. The non-exercise VO2max prediction equation provides a similar, slightly more accurate, VO2max prediction than the CFS without the need for an exercise test or purchase of a Fitbit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA