Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Immunol ; 19(3): 246-254, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29358708

RESUMEN

Defective autophagy is linked to diseases such as rheumatoid arthritis, lupus and inflammatory bowel disease (IBD). However, the mechanisms by which autophagy limits inflammation remain poorly understood. Here we found that loss of the autophagy-related gene Atg16l1 promoted accumulation of the adaptor TRIF and downstream signaling in macrophages. Multiplex proteomic profiling identified SQSTM1 and Tax1BP1 as selective autophagy-related receptors that mediated the turnover of TRIF. Knockdown of Tax1bp1 increased production of the cytokines IFN-ß and IL-1ß. Mice lacking Atg16l1 in myeloid cells succumbed to lipopolysaccharide-mediated sepsis but enhanced their clearance of intestinal Salmonella typhimurium in an interferon receptor-dependent manner. Human macrophages with the Crohn's disease-associated Atg16l1 variant T300A exhibited more production of IFN-ß and IL-1ß. An elevated interferon-response gene signature was observed in patients with IBD who were resistant to treatment with an antibody to the cytokine TNF. These findings identify selective autophagy as a key regulator of signaling via the innate immune system.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Autofagia/inmunología , Inmunidad Innata/inmunología , Inflamación/inmunología , Animales , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/inmunología , Enfermedad de Crohn/inmunología , Femenino , Humanos , Macrófagos/inmunología , Masculino , Ratones , Ratones Transgénicos , Transducción de Señal/inmunología
2.
Nature ; 476(7360): 341-5, 2011 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-21685886

RESUMEN

Mitochondria from diverse organisms are capable of transporting large amounts of Ca(2+) via a ruthenium-red-sensitive, membrane-potential-dependent mechanism called the uniporter. Although the uniporter's biophysical properties have been studied extensively, its molecular composition remains elusive. We recently used comparative proteomics to identify MICU1 (also known as CBARA1), an EF-hand-containing protein that serves as a putative regulator of the uniporter. Here, we use whole-genome phylogenetic profiling, genome-wide RNA co-expression analysis and organelle-wide protein coexpression analysis to predict proteins functionally related to MICU1. All three methods converge on a novel predicted transmembrane protein, CCDC109A, that we now call 'mitochondrial calcium uniporter' (MCU). MCU forms oligomers in the mitochondrial inner membrane, physically interacts with MICU1, and resides within a large molecular weight complex. Silencing MCU in cultured cells or in vivo in mouse liver severely abrogates mitochondrial Ca(2+) uptake, whereas mitochondrial respiration and membrane potential remain fully intact. MCU has two predicted transmembrane helices, which are separated by a highly conserved linker facing the intermembrane space. Acidic residues in this linker are required for its full activity. However, an S259A point mutation retains function but confers resistance to Ru360, the most potent inhibitor of the uniporter. Our genomic, physiological, biochemical and pharmacological data firmly establish MCU as an essential component of the mitochondrial Ca(2+) uniporter.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Genómica , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Canales de Calcio/genética , Células HEK293 , Células HeLa , Humanos , Transporte Iónico , Ratones , Mitocondrias Hepáticas/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Filogenia , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
3.
PLoS Genet ; 5(8): e1000590, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19680543

RESUMEN

The human oxidative phosphorylation (OxPhos) system consists of approximately 90 proteins encoded by nuclear and mitochondrial genomes and serves as the primary cellular pathway for ATP biosynthesis. While the core protein machinery for OxPhos is well characterized, many of its assembly, maturation, and regulatory factors remain unknown. We exploited the tight transcriptional control of the genes encoding the core OxPhos machinery to identify novel regulators. We developed a computational procedure, which we call expression screening, which integrates information from thousands of microarray data sets in a principled manner to identify genes that are consistently co-expressed with a target pathway across biological contexts. We applied expression screening to predict dozens of novel regulators of OxPhos. For two candidate genes, CHCHD2 and SLIRP, we show that silencing with RNAi results in destabilization of OxPhos complexes and a marked loss of OxPhos enzymatic activity. Moreover, we show that SLIRP plays an essential role in maintaining mitochondrial-localized mRNA transcripts that encode OxPhos protein subunits. Our findings provide a catalogue of potential novel OxPhos regulators that advance our understanding of the coordination between nuclear and mitochondrial genomes for the regulation of cellular energy metabolism.


Asunto(s)
Biología Computacional/métodos , Homeostasis , Mitocondrias/metabolismo , Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Animales , Línea Celular , Humanos , Ratones , Mitocondrias/química , Mitocondrias/genética , Fosforilación Oxidativa , ARN/química , ARN/genética , ARN Mitocondrial , Proteínas de Unión al ARN/genética
4.
Blood Adv ; 5(7): 2027-2039, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33847741

RESUMEN

CC-122 is a next-generation cereblon E3 ligase-modulating agent that has demonstrated promising clinical efficacy in patients with relapsed or refractory diffuse large B-cell lymphoma (R/R DLBCL). Mechanistically, CC-122 induces the degradation of IKZF1/3, leading to T-cell activation and robust cell-autonomous killing in DLBCL. We report a genome-wide CRISPR/Cas9 screening for CC-122 in a DLBCL cell line SU-DHL-4 with follow-up mechanistic characterization in 6 DLBCL cell lines to identify genes regulating the response to CC-122. Top-ranked CC-122 resistance genes encode, not only well-defined members or regulators of the CUL4/DDB1/RBX1/CRBN E3 ubiquitin ligase complex, but also key components of signaling and transcriptional networks that have not been shown to modulate the response to cereblon modulators. Ablation of CYLD, NFKBIA, TRAF2, or TRAF3 induces hyperactivation of the canonical and/or noncanonical NF-κB pathways and subsequently diminishes CC-122-induced apoptosis in 5 of 6 DLBCL cell lines. Depletion of KCTD5, the substrate adaptor of the CUL3/RBX1/KCTD5 ubiquitin ligase complex, promotes the stabilization of its cognate substrate, GNG5, resulting in CC-122 resistance in HT, SU-DHL-4, and WSU-DLCL2. Furthermore, knockout of AMBRA1 renders resistance to CC-122 in SU-DHL-4 and U-2932, whereas knockout of RFX7 leads to resistance specifically in SU-DHL-4. The ubiquitous and cell line-specific mechanisms of CC-122 resistance in DLBCL cell lines revealed in this work pinpoint genetic alternations that are potentially associated with clinical resistance in patients and facilitate the development of biomarker strategies for patient stratification, which may improve clinical outcomes of patients with R/R DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Piperidonas , Proteínas Adaptadoras Transductoras de Señales , Línea Celular Tumoral , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Canales de Potasio , Quinazolinonas , Ubiquitina-Proteína Ligasas
6.
ACS Chem Biol ; 15(12): 3149-3158, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33206504

RESUMEN

There is a growing interest in using targeted protein degradation as a therapeutic modality in view of its potential to expand the druggable proteome. One avenue to using this modality is via molecular glue based Cereblon E3 Ligase Modulating Drug compounds. Here, we report the identification of the transcription factor ZBTB16 as a Cereblon neosubstrate. We also report two new Cereblon modulators, CC-3060 and CC-647, that promote ZBTB16 degradation. Unexpectedly, CC-3060 and CC-647 target ZBTB16 for degradation by primarily engaging distinct structural degrons on different zinc finger domains. The reciprocal fusion proteins, ZBTB16-RARα and RARα-ZBTB16, which cause a rare acute promyelocytic leukemia, contain these same structural degrons and can be targeted for proteasomal degradation with Cereblon modulator treatment. Thus, a targeted protein degradation approach via Cereblon modulators may represent a novel therapeutic strategy in acute promyelocytic leukemia where ZBTB16/RARA rearrangements are critical disease drivers.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Fusión Oncogénica/metabolismo , Proteína de la Leucemia Promielocítica con Dedos de Zinc/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Humanos , Leucemia Promielocítica Aguda/metabolismo , Proteolisis , Receptor alfa de Ácido Retinoico/metabolismo , Especificidad por Sustrato
7.
Cell Rep ; 16(2): 583-595, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27373151

RESUMEN

We introduce neutron-encoded (NeuCode) amino acid labeling of mice as a strategy for multiplexed proteomic analysis in vivo. Using NeuCode, we characterize an inducible knockout mouse model of Bap1, a tumor suppressor and deubiquitinase whose in vivo roles outside of cancer are not well established. NeuCode proteomics revealed altered metabolic pathways following Bap1 deletion, including profound elevation of cholesterol biosynthetic machinery coincident with reduced expression of gluconeogenic and lipid homeostasis proteins in liver. Bap1 loss increased pancreatitis biomarkers and reduced expression of mitochondrial proteins. These alterations accompany a metabolic remodeling with hypoglycemia, hypercholesterolemia, hepatic lipid loss, and acinar cell degeneration. Liver-specific Bap1 null mice present with fully penetrant perinatal lethality, severe hypoglycemia, and hepatic lipid deficiency. This work reveals Bap1 as a metabolic regulator in liver and pancreas, and it establishes NeuCode as a reliable proteomic method for deciphering in vivo biology.


Asunto(s)
Proteómica/métodos , Proteínas Supresoras de Tumor/fisiología , Ubiquitina Tiolesterasa/fisiología , Animales , Hematopoyesis , Histonas/metabolismo , Marcaje Isotópico , Metabolismo de los Lípidos , Lisina/metabolismo , Masculino , Redes y Vías Metabólicas , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Hepáticas/metabolismo , Páncreas/metabolismo , Proteoma/metabolismo , Ubiquitinación
8.
Ann N Y Acad Sci ; 1061: 33-40, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16467255

RESUMEN

Primordial germ cells comprise a privileged cellular class within the embryo charged with the elite task of maintaining species longevity. While in lower organisms germ-cell fate is determined by the allocation of germ plasm, mammalian germ-line differentiation requires extracellular signals that converge upon the proximal epiblast. Studies using mutant mice or explanted embryos have identified some of the factors controlling primordial germ-cell specification, such as members of the BMP family, but considerable gaps still exist in our understanding of the complete signaling network. Comprehensive investigations of mammalian germ-line specification have been hampered by the inaccessibility of this cell population in the early embryo. Recently, however, several labs including our own have derived primordial germ cells from embryonic stem cells in vitro, thus providing a powerful new technique for the study of germ cells. In this review the different methods used for the in vitro generation of germ cells and how these techniques may be improved and applied to further advance our knowledge of germ-cell biology are discussed.


Asunto(s)
Técnicas de Cultivo de Célula , Embrión de Mamíferos/citología , Células Germinativas/citología , Células Madre/fisiología , Animales , Diferenciación Celular , Linaje de la Célula , Embrión de Mamíferos/fisiología , Regulación del Desarrollo de la Expresión Génica , Células Germinativas/fisiología , Ratones , Transducción de Señal , Células Madre/citología
9.
Nat Cell Biol ; 17(2): 160-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25621951

RESUMEN

Multiple lines of evidence indicate that mitochondrial dysfunction is central to Parkinson's disease. Here we investigate the mechanism by which parkin, an E3 ubiquitin ligase, and USP30, a mitochondrion-localized deubiquitylase, regulate mitophagy. We find that mitochondrial damage stimulates parkin to assemble Lys 6, Lys 11 and Lys 63 chains on mitochondria, and that USP30 is a ubiquitin-specific deubiquitylase with a strong preference for cleaving Lys 6- and Lys 11-linked multimers. Using mass spectrometry, we show that recombinant USP30 preferentially removes these linkage types from intact ubiquitylated mitochondria and counteracts parkin-mediated ubiquitin chain formation in cells. These results, combined with a series of chimaera and localization studies, afford insights into the mechanism by which a balance of ubiquitylation and deubiquitylation regulates mitochondrial homeostasis, and suggest a general mechanism for organelle autophagy.


Asunto(s)
Homeostasis , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Tioléster Hidrolasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Dominio Catalítico , Extractos Celulares , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Homeostasis/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Lisina/metabolismo , Espectrometría de Masas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/química , Mitofagia/efectos de los fármacos , Modelos Biológicos , Peroxisomas/efectos de los fármacos , Peroxisomas/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Tioléster Hidrolasas/química , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación/efectos de los fármacos
10.
Cell Metab ; 10(2): 119-30, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19656490

RESUMEN

Heme biosynthesis consists of a series of eight enzymatic reactions that originate in mitochondria and continue in the cytosol before returning to mitochondria. Although these core enzymes are well studied, additional mitochondrial transporters and regulatory factors are predicted to be required. To discover such unknown components, we utilized a large-scale computational screen to identify mitochondrial proteins whose transcripts consistently coexpress with the core machinery of heme biosynthesis. We identified SLC25A39, SLC22A4, and TMEM14C, which are putative mitochondrial transporters, as well as C1orf69 and ISCA1, which are iron-sulfur cluster proteins. Targeted knockdowns of all five genes in zebrafish resulted in profound anemia without impacting erythroid lineage specification. Moreover, silencing of Slc25a39 in murine erythroleukemia cells impaired iron incorporation into protoporphyrin IX, and vertebrate Slc25a39 complemented an iron homeostasis defect in the orthologous yeast mtm1Delta deletion mutant. Our results advance the molecular understanding of heme biosynthesis and offer promising candidate genes for inherited anemias.


Asunto(s)
Hemo/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Mitocondrias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Anemia/genética , Animales , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen , Hemo/metabolismo , Proteínas Hierro-Azufre/genética , Ratones , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Familia de Multigenes , ARN Interferente Pequeño/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA