Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
EMBO J ; 28(1): 69-80, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19057509

RESUMEN

Mediator is a modular multiprotein complex required for regulated transcription by RNA polymerase (Pol) II. Here, we show that the middle module of the Mediator core contains a submodule of unique structure and function that comprises the N-terminal part of subunit Med7 (Med7N) and the highly conserved subunit Med31 (Soh1). The Med7N/31 submodule shows a conserved novel fold, with two proline-rich stretches in Med7N wrapping around the right-handed four-helix bundle of Med31. In vitro, Med7N/31 is required for activated transcription and can act in trans when added exogenously. In vivo, Med7N/31 has a predominantly positive function on the expression of a specific subset of genes, including genes involved in methionine metabolism and iron transport. Comparative phenotyping and transcriptome profiling identify specific and overlapping functions of different Mediator submodules.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Estructura Cuaternaria de Proteína , Transactivadores/química , Transactivadores/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Prueba de Complementación Genética , Complejo Mediador , Modelos Moleculares , Datos de Secuencia Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Alineación de Secuencia , Transcripción Genética
2.
EMBO J ; 27(13): 1907-18, 2008 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-18566585

RESUMEN

The positive transcription elongation factor b (P-TEFb) (CDK9/cyclin T (CycT)) promotes mRNA transcriptional elongation through phosphorylation of elongation repressors and RNA polymerase II. To understand the regulation of a transcriptional CDK by its cognate cyclin, we have determined the structures of the CDK9/CycT1 and free cyclin T2. There are distinct differences between CDK9/CycT1 and the cell cycle CDK CDK2/CycA manifested by a relative rotation of 26 degrees of CycT1 with respect to the CDK, showing for the first time plasticity in CDK cyclin interactions. The CDK9/CycT1 interface is relatively sparse but retains some core CDK-cyclin interactions. The CycT1 C-terminal helix shows flexibility that may be important for the interaction of this region with HIV TAT and HEXIM. Flavopiridol, an anticancer drug in phase II clinical trials, binds to the ATP site of CDK9 inducing unanticipated structural changes that bury the inhibitor. CDK9 activity and recognition of regulatory proteins are governed by autophosphorylation. We show that CDK9/CycT1 autophosphorylates on Thr186 in the activation segment and three C-terminal phosphorylation sites. Autophosphorylation on all sites occurs in cis.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/química , Quinasa 9 Dependiente de la Ciclina/metabolismo , Ciclinas/metabolismo , Flavonoides/metabolismo , Piperidinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Ciclina T , Ciclinas/química , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Alineación de Secuencia
3.
Nucleic Acids Res ; 38(10): 3186-95, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20123732

RESUMEN

Mediator is the central coactivator complex required for regulated transcription by RNA polymerase (Pol) II. Mediator consists of 25 subunits arranged in the head, middle, tail and kinase modules. Structural and functional studies of Mediator are limited by the availability of protocols for the preparation of recombinant modules. Here, we describe protocols for obtaining pure endogenous and recombinant complete Mediator middle module from Saccharomyces cerevisiae that consists of seven subunits: Med1, 4, 7, 9, 10, 21 and 31. Native mass spectrometry reveals that all subunits are present in equimolar stoichiometry. Ion-mobility mass spectrometry, limited proteolysis, light scattering and small-angle X-ray scattering all indicate a high degree of intrinsic flexibility and an elongated shape of the middle module. Protein-protein interaction assays combined with previously published data suggest that the Med7 and Med4 subunits serve as a binding platform to form the three heterodimeric subcomplexes, Med7N/21, Med7C/31 and Med4/9. The subunits, Med1 and Med10, which bridge to the Mediator tail module, bind to both Med7 and Med4.


Asunto(s)
Complejo Mediador/química , Proteínas de Saccharomyces cerevisiae/química , Complejo Mediador/genética , Complejo Mediador/metabolismo , Modelos Moleculares , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Chirality ; 22 Suppl 1: E40-3, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21038395

RESUMEN

Flavopiridol is a potent cyclin-dependant kinase (CDK) inhibitor and is in clinical trials for anticancer treatment. A limiting factor in its drug development has been the high dosage required in human clinical trials. The high dosage is suggested to be necessary because of significant flavopiridol binding to human blood serum. Albumin is the major protein component of blood serum and has been suggested as a likely high affinity binding target. We characterized the binding of human serum albumin to flavopiridol using circular dichroism (hereafter CD). Flavopiridol bound to human serum albumin has a diagnostic CD binding peak at 284 nm. The diagnostic CD binding peak was unobservable for flavopiridol with bovine serum albumin, using the same experimental conditions. However, under higher albumin concentrations a small CD signal is observed confirming, flavopiridol binds to bovine serum albumin as well.


Asunto(s)
Flavonoides/química , Piperidinas/química , Albúmina Sérica/química , Animales , Bovinos , Dicroismo Circular , Quinasas Ciclina-Dependientes/química , Humanos , Estructura Molecular , Estereoisomerismo
5.
J Mol Biol ; 350(5): 833-42, 2005 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15979093

RESUMEN

Cyclin C binds the cyclin-dependent kinases CDK8 and CDK3, which regulate mRNA transcription and the cell cycle, respectively. The crystal structure of cyclin C reveals two canonical five-helix repeats and a specific N-terminal helix. In contrast to other cyclins, the N-terminal helix is short, mobile, and in an exposed position that allows for interactions with proteins other than the CDKs. A model of the CDK8/cyclin C pair reveals two regions in the interface with apparently distinct roles. A conserved region explains promiscuous binding of cyclin C to CDK8 and CDK3, and a non-conserved region may be responsible for discrimination of CDK8 against other CDKs involved in transcription. A conserved and cyclin C-specific surface groove may recruit substrates near the CDK8 active site. Activation of CDKs generally involves phosphorylation of a loop at a threonine residue. In CDK8, this loop is longer and the threonine is absent, suggesting an alternative mechanism of activation that we discuss based on a CDK8-cyclin C model.


Asunto(s)
Quinasas Ciclina-Dependientes/química , Ciclinas/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Quinasa 8 Dependiente de Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/fisiología , Ciclinas/metabolismo , Ciclinas/fisiología , Unión Proteica , Conformación Proteica , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiología , Alineación de Secuencia
6.
PLoS One ; 9(9): e107654, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25233083

RESUMEN

The Herpes Simplex Virus 1 (HSV-1)-encoded ICP22 protein plays an important role in viral infection and affects expression of host cell genes. ICP22 is known to reduce the global level of serine (Ser)2 phosphorylation of the Tyr1Ser2Pro3Thr4Ser5Pro6Ser7 heptapeptide repeats comprising the carboxy-terminal domain (CTD) of the large subunit of RNA polymerase (pol) II. Accordingly, ICP22 is thought to associate with and inhibit the activity of the positive-transcription elongation factor b (P-TEFb) pol II CTD Ser2 kinase. We show here that ICP22 causes loss of CTD Ser2 phosphorylation from pol II engaged in transcription of protein-coding genes following ectopic expression in HeLa cells and that recombinant ICP22 interacts with the CDK9 subunit of recombinant P-TEFb. ICP22 also interacts with pol II in vitro. Residues 193 to 256 of ICP22 are sufficient for interaction with CDK9 and inhibition of pol II CTD Ser2 phosphorylation but do not interact with pol II. These results indicate that discrete regions of ICP22 interact with either CDK9 or pol II and that ICP22 interacts directly with CDK9 to inhibit expression of host cell genes.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Herpesvirus Humano 1/genética , Proteínas Inmediatas-Precoces/metabolismo , Factor B de Elongación Transcripcional Positiva/antagonistas & inhibidores , ARN Polimerasa II/antagonistas & inhibidores , Línea Celular Tumoral , Células HeLa , Humanos , Fosforilación , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Quinasas/metabolismo , ARN Polimerasa II/genética , Transcripción Genética/genética
7.
J Med Chem ; 56(3): 660-70, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23252711

RESUMEN

Cyclin-dependent kinase 9/cyclin T, the protein kinase heterodimer that constitutes positive transcription elongation factor b, is a well-validated target for treatment of several diseases, including cancer and cardiac hypertrophy. In order to aid inhibitor design and rationalize the basis for CDK9 selectivity, we have studied the CDK-binding properties of six different members of a 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile series that bind to both CDK9/cyclin T and CDK2/cyclin A. We find that for a given CDK, the melting temperature of a CDK/cyclin/inhibitor complex correlates well with inhibitor potency, suggesting that differential scanning fluorimetry (DSF) is a useful orthogonal measure of inhibitory activity for this series. We have used DSF to demonstrate that the binding of these compounds is independent of the presence or absence of the C-terminal tail region of CDK9, unlike the binding of the CDK9-selective inhibitor 5,6-dichlorobenzimidazone-1-ß-d-ribofuranoside (DRB). Finally, on the basis of 11 cocrystal structures bound to CDK9/cyclin T or CDK2/cyclin A, we conclude that selective inhibition of CDK9/cyclin T by members of the 4-(thiazol-5-yl)-2-(phenylamino)pyrimidine-5-carbonitrile series results from the relative malleability of the CDK9 active site rather than from the formation of specific polar contacts.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Humanos , Modelos Moleculares , Relación Estructura-Actividad
8.
J Med Chem ; 56(3): 640-59, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23301767

RESUMEN

Cancer cells often have a high demand for antiapoptotic proteins in order to resist programmed cell death. CDK9 inhibition selectively targets survival proteins and reinstates apoptosis in cancer cells. We designed a series of 4-thiazol-2-anilinopyrimidine derivatives with functional groups attached to the C5-position of the pyrimidine or to the C4-thiazol moiety and investigated their effects on CDK9 potency and selectivity. One of the most selective compounds, 12u inhibits CDK9 with IC(50) = 7 nM and shows over 80-fold selectivity for CDK9 versus CDK2. X-ray crystal structures of 12u bound to CDK9 and CDK2 provide insights into the binding modes. This work, together with crystal structures of selected inhibitors in complex with both enzymes described in a companion paper, (34) provides a rationale for the observed SAR. 12u demonstrates potent anticancer activity against primary chronic lymphocytic leukemia cells with a therapeutic window 31- and 107-fold over those of normal B- and T-cells.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Cristalografía por Rayos X , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Pirimidinas/síntesis química , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad
9.
Curr Pharm Des ; 18(20): 2883-90, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22571657

RESUMEN

Deregulation of cyclin-dependent kinases (CDKs) has been associated with many cancer types and has evoked an interest in chemical inhibitors with possible therapeutic benefit. While most known inhibitors display broad selectivity towards multiple CDKs, recent work highlights CDK9 as the critical target responsible for the anticancer activity of clinically evaluated drugs. In this review, we discuss recent findings provided by structural biologists that may allow further development of highly specific inhibitors of CDK9 towards applications in cancer therapy. We also highlight the role of CDK9 in inflammatory processes and diseases.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Sistemas de Liberación de Medicamentos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/farmacología , Quinasa 9 Dependiente de la Ciclina/metabolismo , Diseño de Fármacos , Humanos , Inflamación/enzimología , Inflamación/patología , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología
10.
ACS Chem Biol ; 7(5): 811-6, 2012 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-22292676

RESUMEN

CDK9 is the kinase of positive transcription elongation factor b and facilitates the transition of paused RNA polymerase II to processive transcription elongation. CDK9 is a validated target for the treatment of cancer, cardiac hypertrophy, and human immunodeficiency virus. Here we analyze different CDK9/cyclin T variants to identify a form of the complex amenable to use in inhibitor design. To demonstrate the utility of this system, we have determined the crystal structures of CDK9/cyclin T and CDK2/cyclin A bound to the CDK9-specific inhibitor CAN508. Comparison of the structures reveals CDK9-specific conformational changes and identifies a CDK9-specific hydrophobic pocket, adjacent to the αC-helix. By comparison with a previously published structure of CDK9/cyclin T/human immunodeficiency virus TAT we find that the CDK9 αC-helix has a degree of conformational variability that has the potential to be exploited for inhibitor design.


Asunto(s)
Compuestos Azo/farmacología , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/química , Pirazoles/farmacología , Sitios de Unión , Cristalografía por Rayos X , Ciclina A/química , Ciclina A/metabolismo , Ciclina T/química , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Humanos , Modelos Moleculares , Estructura Secundaria de Proteína
11.
Structure ; 20(10): 1788-95, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-22959624

RESUMEN

CDK9, the kinase of positive transcription elongation factor b (P-TEFb), stimulates transcription elongation by phosphorylating RNA polymerase II and transcription elongation factors. Using kinetic analysis of a human P-TEFb complex consisting of CDK9 and cyclin T, we show that the CDK9 C-terminal tail sequence is important for the catalytic mechanism and imposes an ordered binding of substrates and release of products. Crystallographic analysis of a CDK9/cyclin T complex in which the C-terminal tail partially blocks the ATP binding site reveals a possible reaction intermediate. Biochemical characterization of CDK9 mutants supports a model in which the CDK9 tail cycles through different conformational states. We propose that this mechanism is critical for the pattern of CTD Ser2 phosphorylation on actively transcribed genes.


Asunto(s)
Ciclina T/química , Quinasa 9 Dependiente de la Ciclina/química , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/genética , Diclororribofuranosil Benzoimidazol/química , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Factor B de Elongación Transcripcional Positiva/química , Unión Proteica , Inhibidores de Proteínas Quinasas/química
12.
Nat Struct Mol Biol ; 18(4): 404-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21378965

RESUMEN

Eukaryotic transcription is regulated by interactions between gene-specific activators and the coactivator complex Mediator. Here we report the NMR structure of the Mediator subunit Med25 (also called Arc92) activator interaction domain (ACID) and analyze the structural and functional interaction of ACID with the archetypical acidic transcription activator VP16. Unlike other known activator targets, ACID forms a seven-stranded ß-barrel framed by three helices. The VP16 subdomains H1 and H2 bind to opposite faces of ACID and cooperate during promoter-dependent activated transcription in a in vitro system. The activator-binding ACID faces are functionally required and conserved among higher eukaryotes. Comparison with published activator structures reveals that the VP16 activation domain uses distinct interaction modes to adapt to unrelated target surfaces and folds that evolved for activator binding.


Asunto(s)
Proteína Vmw65 de Virus del Herpes Simple/metabolismo , Complejo Mediador/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Complejo Mediador/química , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Activación Transcripcional
13.
Chem Biol ; 17(9): 931-6, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20851342

RESUMEN

Cdk9, the kinase of the positive transcription elongation factor b, is required for processive transcription elongation by RNA polymerase II. Cdk9 inhibition contributes to the anticancer activity of many Cdk inhibitors under clinical investigation and hence there is interest in selective Cdk9 inhibitors. DRB (5,6-dichlorobenzimidazone-1-ß-D-ribofuranoside) is a commonly used reagent for Cdk9 inhibition in cell biology studies. The crystal structures of Cdk9 and Cdk2 in complex with DRB reported here describe the molecular basis for the DRB selectivity toward Cdk9. The DRB chlorine atoms form halogen bonds that are specific for the Cdk9 kinase hinge region. Kinetic and thermodynamic experiments validate the structural findings and implicate the C-terminal residues of Cdk9 in contributing to the affinity for DRB. These results open the possibility to exploit halogen atoms in inhibitor design to specifically target Cdk9.


Asunto(s)
Cloro/química , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Diclororribofuranosil Benzoimidazol/química , Inhibidores de Proteínas Quinasas/química , Sitios de Unión , Cristalografía por Rayos X , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 9 Dependiente de la Ciclina/metabolismo , Diclororribofuranosil Benzoimidazol/farmacología , Cinética , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Termodinámica , Temperatura de Transición
14.
Genes Cancer ; 1(4): 369-80, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21779453

RESUMEN

Neuroblastoma (NB), the most frequent extracranial solid tumor of children accounting for nearly 15% of all childhood cancer mortality, displays overexpression of antiapoptotic Bcl-2 and Mcl-1 in aggressive forms of the disease. The clinical phase 2 drug roscovitine (CYC202, seliciclib), a relatively selective inhibitor of cyclin-dependent kinases (CDKs), and CR8, a recently developed and more potent analog, induce concentration-dependent apoptotic cell death of NB cells (average IC(50) values: 24.2 µM and 0.4 µM for roscovitine and CR8, respectively). Both roscovitine and CR8 trigger rapid down-regulation of the short-lived survival factor Mcl-1 in the 9 investigated human NB cell lines. This effect was further analyzed in the human SH-SY5Y NB cell line. Down-regulation of Mcl-1 appears to depend on inhibition of CDKs rather than on interaction of roscovitine and CR8 with their secondary targets. CR8 is an adenosine triphosphate-competitive inhibitor of CDK9, and the structure of a CDK9/cyclin T/CR8 complex is described. Mcl-1 down-regulation occurs both at the mRNA and protein levels. This effect can be accounted for by a reduction in Mcl-1 protein synthesis, under stable Mcl-1 degradation conditions. Mcl-1 down-regulation is accompanied by a transient increase in free Noxa, a proapoptotic factor. Mcl-1 down-regulation occurs independently of the presence or up-regulation of p53 and of the MYCN status. Taken together, these results suggest that the clinical drug roscovitine and its novel analog CR8 induce apoptotic tumor cell death by down-regulating Mcl-1, a key survival factor expressed in all NB cell lines. CDK inhibition may thus constitute a new approach to treat refractory high-risk NB.

15.
Cell ; 131(7): 1260-72, 2007 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-18160037

RESUMEN

Synthesis of ribosomal RNA (rRNA) by RNA polymerase (Pol) I is the first step in ribosome biogenesis and a regulatory switch in eukaryotic cell growth. Here we report the 12 A cryo-electron microscopic structure for the complete 14-subunit yeast Pol I, a homology model for the core enzyme, and the crystal structure of the subcomplex A14/43. In the resulting hybrid structure of Pol I, A14/43, the clamp, and the dock domain contribute to a unique surface interacting with promoter-specific initiation factors. The Pol I-specific subunits A49 and A34.5 form a heterodimer near the enzyme funnel that acts as a built-in elongation factor and is related to the Pol II-associated factor TFIIF. In contrast to Pol II, Pol I has a strong intrinsic 3'-RNA cleavage activity, which requires the C-terminal domain of subunit A12.2 and, apparently, enables ribosomal RNA proofreading and 3'-end trimming.


Asunto(s)
ADN Polimerasa I/química , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , ADN Polimerasa I/genética , ADN Polimerasa I/metabolismo , Modelos Moleculares , Mutación , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/metabolismo , Regiones Promotoras Genéticas , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Subunidades de Proteína , ARN Ribosómico/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad , Factores de Transcripción TFII/química , Factores de Transcripción TFII/metabolismo , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo
16.
J Biol Chem ; 280(18): 18171-8, 2005 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-15710619

RESUMEN

The Mediator of transcriptional regulation is the central coactivator that enables a response of RNA polymerase II (Pol II) to activators and repressors. We present the 3.0-A crystal structure of a highly conserved part of the Mediator, the MED7.MED21 (Med7.Srb7) heterodimer. The structure is very extended, spanning one-third of the Mediator length and almost the diameter of Pol II. It shows a four-helix bundle domain and a coiled-coil protrusion connected by a flexible hinge. Four putative protein binding sites on the surface allow for assembly of the Mediator middle module and for binding of the conserved subunit MED6, which is shown to bridge to the Mediator head module. A flexible MED6 bridge and the MED7.MED21 hinge could account for changes in overall Mediator structure upon binding to Pol II or activators. Our results support the idea that transcription regulation involves conformational changes within the general machinery.


Asunto(s)
Secuencia Conservada , Proteínas de Saccharomyces cerevisiae/química , Transactivadores/química , Factores de Transcripción/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Leucina Zippers/genética , Complejo Mediador , Datos de Secuencia Molecular , Mapeo Peptídico , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Factores de Transcripción/genética
17.
Genes Dev ; 19(12): 1401-15, 2005 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15964991

RESUMEN

The C-terminal domain (CTD) of RNA polymerase II (Pol II) integrates nuclear events by binding proteins involved in mRNA biogenesis. CTD-binding proteins recognize a specific CTD phosphorylation pattern, which changes during the transcription cycle, due to the action of CTD-modifying enzymes. Structural and functional studies of CTD-binding and -modifying proteins now reveal some of the mechanisms underlying CTD function. Proteins recognize CTD phosphorylation patterns either directly, by contacting phosphorylated residues, or indirectly, without contact to the phosphate. The catalytic mechanisms of CTD kinases and phosphatases are known, but the basis for CTD specificity of these enzymes remains to be understood.


Asunto(s)
ARN Polimerasa II/química , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Escisión y Poliadenilación de ARNm
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA