Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
eNeuro ; 10(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36526365

RESUMEN

Injuries to peripheral nerves are frequent, yet no drug therapies are available for effective nerve repair. The slow growth rate of axons and inadequate access to growth factors challenge natural repair of nerves. A better understanding of the molecules that can promote the rate of axon growth may reveal therapeutic opportunities. Molecular profiling of injured neurons at early intervals of injury, when regeneration is at the maximum, has been the gold standard for exploring growth promoters. A complementary in vitro regenerative priming model was recently shown to induce enhanced outgrowth in adult sensory neurons. In this work, we exploited the in vitro priming model to reveal novel candidates for adult nerve regeneration. We performed a whole-tissue proteomics analysis of the in vitro primed dorsal root ganglia (DRGs) from adult SD rats and compared their molecular profile with that of the in vivo primed, and control DRGs. The proteomics data generated are available via ProteomeXchange with identifier PXD031927. From the follow-up analysis, Bioinformatics interventions, and literature curation, we identified several molecules that were differentially expressed in the primed DRGs with a potential to modulate adult nerve regrowth. We then validated the growth promoting roles of mesencephalic astrocyte-derived neurotrophic factor (MANF), one of the hits we identified, in adult rat sensory neurons. Overall, in this study, we explored two growth priming paradigm and shortlisted several candidates, and validated MANF, as potential targets for adult nerve regeneration. We also demonstrate that the in vitro priming model is a valid tool for adult nerve regeneration studies.


Asunto(s)
Ganglios Espinales , Traumatismos de los Nervios Periféricos , Ratas , Animales , Ganglios Espinales/metabolismo , Proteómica , Ratas Sprague-Dawley , Células Cultivadas , Axones/metabolismo , Regeneración Nerviosa/fisiología , Células Receptoras Sensoriales/fisiología , Traumatismos de los Nervios Periféricos/metabolismo
2.
Cells ; 11(14)2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35883689

RESUMEN

Neuroendocrine prostate cancer (NEPC) represents a highly aggressive form of prostate tumors. NEPC results from trans-differentiated castration-resistant prostate cancer (CRPC) with increasing evidence indicating that the incidence of NEPC often results from the adaptive response to androgen deprivation therapy. Recent studies have shown that a subset of NEPC exhibits overexpression of the MYCN oncogene along with the loss of tumor suppressing TP53 and RB1 activities. N-MYC is structurally disordered with no binding pockets available on its surface and so far, no clinically approved drug is available. We adopted a drug-repurposing strategy, screened ~1800 drug molecules, and identified fludarabine phosphate to preferentially inhibit the proliferation of N-MYC overexpressing NEPC cells by inducing reactive oxygen species (ROS). We also show that fludarabine phosphate affects N-MYC protein levels and N-MYC transcriptional targets in NEPC cells. Moreover, enhanced ROS production destabilizes N-MYC protein by inhibiting AKT signaling and is responsible for the reduced survival of NEPC cells and tumors. Our results indicate that increasing ROS production by the administration of fludarabine phosphate may represent an effective treatment option for patients with N-MYC overexpressing NEPC tumors.


Asunto(s)
Carcinoma Neuroendocrino , Neoplasias de la Próstata , Antagonistas de Andrógenos/uso terapéutico , Carcinoma Neuroendocrino/patología , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Humanos , Masculino , Proteína Proto-Oncogénica N-Myc/metabolismo , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/uso terapéutico , Fosfato de Vidarabina/análogos & derivados
3.
Cell Death Discov ; 7(1): 364, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34811362

RESUMEN

The progression of prostate cancer (PC) into neuroendocrine prostate cancer (NEPC) is a major challenge in treating PC. In NEPC, the PC cells undergo neuroendocrine differentiation (NED); however, the exact molecular mechanism that triggers NED is unknown. Peripheral nerves are recently shown to promote PC. However, their contribution to NEPC was not studied well. In this study, we explored whether sympathetic neurosignaling contributes to NED. We found that human prostate tumors from patients that later developed metastases and castration-resistant prostate cancer (CRPC), a stage preceding to NEPC, have high sympathetic innervations. Our work revealed that high concentrations of the sympathetic neurotransmitter norepinephrine (NE) induces NED-like changes in PC cells in vitro, evident by their characteristic cellular and molecular changes. The NE-mediated NED was effectively inhibited by the Adrß2 blocker propranolol. Strikingly, propranolol along with castration also significantly inhibited the development and progression of NEPC in vivo in an orthotopic NEPC model. Altogether, our results indicate that the NE-Adrß2 axis is a potential therapeutic intervention point for NEPC.

4.
Physiol Behav ; 229: 113255, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221393

RESUMEN

Diabetes in humans has been associated for a long time with cognitive dysfunction. In rodent animal models, cognitive dysfunction can manifest as impaired hippocampal synaptic plasticity. Particular attention has been concentrated on the receptor for advanced glycation end products (RAGE), which is implicated in multiple diabetic complications involving the development of vascular and peripheral nerve abnormalities. In this study, we hypothesize that RAGE signaling alters glutamate receptor function and expression, impairing synaptic transmission in the hippocampus. Using preparations of hippocampal slices from male mice, we show a RAGE-dependent decrease in long-term potentiation (LTP) and an increase in paired-pulse facilitation (PPF) following streptozotocin (STZ)-induced diabetes. Consistently, in hippocampal cultures from male and female neonatal mice, high glucose caused a RAGE-dependent reduction of AMPA- but not NMDA-evoked currents, and an increase in cytosolic reactive oxygen species (ROS). Consistently, when cultures were co-treated with high glucose and the RAGE antagonist FPS-ZM1, AMPA-evoked currents were unchanged. Hippocampi from STZ-induced hyperglycemic wild type (WT) mice showed increased RAGE expression concomitant with a decrease of both expression and phosphorylation (Ser 831 and 845) of the AMPA GluA1 subunit. We found these changes correlated to activation of the MAPK pathway, consistent with decreased pJNK/JNK ratio and the JNK kinase, pMEK7. As no changes in expression or phosphorylation of regulatory proteins were observed in hippocampi from STZ-induced hyperglycemic RAGE-KO mice, we report a RAGE-dependent impairment in the hippocampi of hyperglycemic WT mice, with reduced AMPA receptor expression/function and LTP deficits.


Asunto(s)
Hipocampo , Receptores AMPA , Animales , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Obesos , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica
5.
Front Oncol ; 10: 744, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477953

RESUMEN

Accumulating evidence now indicates that peripheral nerves and solid tumors mutually support the growth of each other. Tumor-derived molecular cues guide nerve infiltration to the tumor milieu, while the tumor-infiltrating nerves provide molecular support to promote tumor growth and dissemination. In this mini-review, we discuss the unique roles of sympathetic and parasympathetic nerves in promoting tumor growth and metastasis. The contribution of adrenergic and cholinergic signals, the specific receptors involved, and the downstream molecular links in both cancer cells and stromal cells are discussed for their intrinsic capacity to modulate tumor growth. We identified unappreciated niche areas in the field, an investigation of which are critical to filling the knowledge gap in understanding the biology of neuromodulation of cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA