Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1833(12): 3166-3175, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24036102

RESUMEN

The Transient Receptor Potential Vanilloid 1 (TRPV1, vanilloid receptor 1) ion channel plays a key role in the perception of thermal and inflammatory pain, however, its molecular environment in dorsal root ganglia (DRG) is largely unexplored. Utilizing a panel of sequence-directed antibodies against TRPV1 protein and mouse DRG membranes, the channel complex from mouse DRG was detergent-solubilized, isolated by immunoprecipitation and subsequently analyzed by mass spectrometry. A number of potential TRPV1 interaction partners were identified, among them cytoskeletal proteins, signal transduction molecules, and established ion channel subunits. Based on stringent specificity criteria, the voltage-gated K(+) channel beta 2 subunit (Kvß2), an accessory subunit of voltage-gated K(+) channels, was identified of being associated with native TRPV1 channels. Reverse co-immunoprecipitation and antibody co-staining experiments confirmed TRPV1/Kvß2 association. Biotinylation assays in the presence of Kvß2 demonstrated increased cell surface expression levels of TRPV1, while patch-clamp experiments resulted in a significant increase of TRPV1 sensitivity to capsaicin. Our work shows, for the first time, the association of a Kvß subunit with TRPV1 channels, and suggests that such interaction may play a role in TRPV1 channel trafficking to the plasma membrane.


Asunto(s)
Subunidades de Proteína/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Biotinilación , Membrana Celular/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Espectrometría de Masas , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp , Unión Proteica , Ratas , Proteínas Recombinantes/metabolismo , Canales de Potasio de la Superfamilia Shaker/química
2.
Stem Cells Dev ; 26(22): 1612-1625, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28946818

RESUMEN

Spinocerebellar ataxia type 6 (SCA6) is an autosomal-dominant neurodegenerative disorder that is caused by a CAG trinucleotide repeat expansion in the CACNA1A gene. As one of the few bicistronic genes discovered in the human genome, CACNA1A encodes not only the α1A subunit of the P/Q type voltage-gated Ca2+ channel CaV2.1 but also the α1ACT protein, a 75 kDa transcription factor sharing the sequence of the cytoplasmic C-terminal tail of the α1A subunit. Isoforms of both proteins contain the polyglutamine (polyQ) domain that is expanded in SCA6 patients. Although certain SCA6 phenotypes appear to be specific for Purkinje neurons, other pathogenic effects of the SCA6 polyQ mutation can affect a broad spectrum of central nervous system (CNS) neuronal subtypes. We investigated the expression and function of CACNA1A gene products in human neurons derived from induced pluripotent stem cells from two SCA6 patients. Expression levels of CACNA1A encoding α1A subunit were similar between SCA6 and control neurons, and no differences were found in the subcellular distribution of CaV2.1 channel protein. The α1ACT immunoreactivity was detected in the majority of cell nuclei of SCA6 and control neurons. Although no SCA6 genotype-dependent differences in CaV2.1 channel function were observed, they were found in the expression levels of the α1ACT target gene Granulin (GRN) and in glutamate-induced cell vulnerability.


Asunto(s)
Canales de Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Neuronas/metabolismo , Ataxias Espinocerebelosas/metabolismo , Regulación de la Expresión Génica/fisiología , Humanos , Factores de Transcripción/metabolismo , Expansión de Repetición de Trinucleótido/fisiología
3.
Int J Parasitol ; 40(2): 201-13, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19733174

RESUMEN

14-3-3s are a family of phosphoserine/phosphothreonine binding proteins directly affecting many protein functions by regulating enzyme activity, intracellular localisation or mediating protein-protein interaction. The single 14-3-3 (g14-3-3) of the flagellated parasite Giardia duodenalis is phosphorylated at residue threonine 214 (T214) and polyglycylated at the extreme C-terminus in a stage-specific manner. To define the role of each post-translational modification, Giardia transgenic lines expressing a N-terminally FLAG-tagged g14-3-3, or the single point mutant T214A, or the E246A and the E247A mutants of the putative polyglycylation sites, were generated in this study. By affinity chromatography and MALDI-MS analysis, Glu246 was identified as the only site of polyglycylation. The absence of a polyglycine chain results in the nuclear localisation of the protein at any parasite life-stage, suggesting a role for polyglycylation in 14-3-3 nucleo/cytoplasm shuttling. Moreover, cyst formation was strongly induced in parasites expressing the E246A mutant and delayed in those harbouring the T214A mutant. Finally, in vitro overlay assays with a GST_T214E mutant indicated that phosphorylation can alter in vitro the binding properties of 14-3-3. The present data suggest that g14-3-3 post-translational modifications act in combination to affect encystation efficiency in Giardia.


Asunto(s)
Proteínas 14-3-3/metabolismo , Giardia/crecimiento & desarrollo , Giardia/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Giardia/genética , Péptidos/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA