RESUMEN
Aberrant activation of matrix metalloproteinases (MMPs) is a common feature of pathological cascades observed in diverse disorders, such as cancer, fibrosis, immune dysregulation, and neurodegenerative diseases. MMP-9, in particular, is highly dynamically regulated in several pathological processes. Development of MMP inhibitors has therefore been an attractive strategy for therapeutic intervention. However, a long history of failed clinical trials has demonstrated that broad-spectrum MMP inhibitors have limited clinical utility, which has spurred the development of inhibitors selective for individual MMPs. Attaining selectivity has been technically challenging because of sequence and structural conservation across the various MMPs. Here, through a biochemical and structural screening paradigm, we have identified JNJ0966, a highly selective compound that inhibited activation of MMP-9 zymogen and subsequent generation of catalytically active enzyme. JNJ0966 had no effect on MMP-1, MMP-2, MMP-3, MMP-9, or MMP-14 catalytic activity and did not inhibit activation of the highly related MMP-2 zymogen. The molecular basis for this activity was characterized as an interaction of JNJ0966 with a structural pocket in proximity to the MMP-9 zymogen cleavage site near Arg-106, which is distinct from the catalytic domain. JNJ0966 was efficacious in reducing disease severity in a mouse experimental autoimmune encephalomyelitis model, demonstrating the viability of this therapeutic approach. This discovery reveals an unprecedented pharmacological approach to MMP inhibition, providing an opportunity to improve selectivity of future clinical drug candidates. Targeting zymogen activation in this manner may also allow for pharmaceutical exploration of other enzymes previously viewed as intractable drug targets.
Asunto(s)
Precursores Enzimáticos/antagonistas & inhibidores , Precursores Enzimáticos/química , Metaloproteinasa 9 de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/química , Regulación Alostérica , Animales , Células COS , Dominio Catalítico , Chlorocebus aethiops , Precursores Enzimáticos/genética , Precursores Enzimáticos/metabolismo , Humanos , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Dominios ProteicosRESUMEN
Diacylglycerol acyltransferase (DGAT) catalyzes the final step in triglyceride (TG) synthesis. There are two isoforms, DGAT1 and DGAT2, with distinct protein sequences and potentially different physiological functions. To date, the ability to determine clear functional differences between DGAT1 and DGAT2, especially with respect to hepatic TG synthesis, has been elusive. To dissect the roles of these two key enzymes, we pretreated HepG2 hepatoma cells with (13)C(3)-D(5)-glycerol or (13)C(18)-oleic acid, and profiled the major isotope-labeled TG species by liquid chromatography tandem mass spectrometry. Selective DGAT1 and DGAT2 inhibitors demonstrated that (13)C(3)-D(5)-glycerol-incorporated TG synthesis was mediated by DGAT2, not DGAT1. Conversely, (13)C(18)-oleoyl-incorporated TG synthesis was predominantly mediated by DGAT1. To trace hepatic TG synthesis and VLDL triglyceride (VLDL-TG) secretion in vivo, we administered D(5)-glycerol to mice and measured plasma levels of D(5)-glycerol-incorporated TG. Treatment with an antisense oligonucleotide (ASO) to DGAT2 led to a significant reduction in D(5)-glycerol incorporation into VLDL-TG. In contrast, the DGAT2 ASO had no effect on the incorporation of exogenously administered (13)C(18)-oleic acid into VLDL-TG. Thus, our results indicate that DGAT1 and DGAT2 mediate distinct hepatic functions: DGAT2 is primarily responsible for incorporating endogenously synthesized FAs into TG, whereas DGAT1 plays a greater role in esterifying exogenous FAs to glycerol.
Asunto(s)
Diacilglicerol O-Acetiltransferasa/metabolismo , Pruebas de Enzimas/métodos , Glicerol/metabolismo , Hígado/enzimología , Ácido Oléico/metabolismo , Animales , Diacilglicerol O-Acetiltransferasa/antagonistas & inhibidores , Diacilglicerol O-Acetiltransferasa/genética , Inhibidores Enzimáticos/farmacología , Esterificación/efectos de los fármacos , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Células Hep G2 , Humanos , Marcaje Isotópico , Lipoproteínas VLDL/metabolismo , Masculino , Ratones , Oligonucleótidos Antisentido/genética , Triglicéridos/biosíntesisRESUMEN
Endothelial lipase (EL) is a phospholipase A1 (PLA1) enzyme that hydrolyzes phospholipids at the sn-1 position to produce lysophospholipids and free fatty acids. Measurement of the PLA1 activity of EL is usually accomplished by the use of substrates that are also hydrolyzed by lipases in other subfamilies such as PLA2 enzymes. In order to distinguish PLA1 activity of EL from PLA2 enzymatic activity in cell-based assays, cell supernatants, and other nonhomogeneous systems, a novel fluorogenic substrate with selectivity toward PLA1 hydrolysis was conceived and characterized. This substrate was preferred by PLA1 enzymes, such as EL and hepatic lipase, and was cleaved with much lower efficiency by lipases that exhibit primarily triglyceride lipase activity, such as LPL or a lipase with PLA2 activity. The phospholipase activity detected by the PLA1 substrate could be inhibited with the small molecule esterase inhibitor ebelactone B. Furthermore, the PLA1 substrate was able to detect EL activity in human umbilical vein endothelial cells in a cell-based assay. This substrate is a useful reagent for identifying modulators of PLA1 enzymes, such as EL, and aiding in characterizing their mechanisms of action.
Asunto(s)
Compuestos de Boro/metabolismo , Endotelio/enzimología , Lisofosfolípidos/metabolismo , Fosfolipasas A1/análisis , Animales , Colorantes Fluorescentes/metabolismo , Humanos , Lactonas/farmacología , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Ratones , Fosfolipasas A1/antagonistas & inhibidoresRESUMEN
A high-resolution structure of a ligand-bound, soluble form of human monoglyceride lipase (MGL) is presented. The structure highlights a novel conformation of the regulatory lid-domain present in the lipase family as well as the binding mode of a pharmaceutically relevant reversible inhibitor. Analysis of the structure lacking the inhibitor indicates that the closed conformation can accommodate the native substrate 2-arachidonoyl glycerol. A model is proposed in which MGL undergoes conformational and electrostatic changes during the catalytic cycle ultimately resulting in its dissociation from the membrane upon completion of the cycle. In addition, the study outlines a successful approach to transform membrane associated proteins, which tend to aggregate upon purification, into a monomeric and soluble form.
Asunto(s)
Monoacilglicerol Lipasas/antagonistas & inhibidores , Monoacilglicerol Lipasas/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Moduladores de Receptores de Cannabinoides/química , Moduladores de Receptores de Cannabinoides/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Endocannabinoides , Glicéridos/química , Glicéridos/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Mutagénesis Sitio-Dirigida , Unión Proteica , Electricidad EstáticaRESUMEN
Chymases (EC 3.4.21.39) are mast cell serine proteinases that are variably expressed in different species and, in most cases, display either chymotryptic or elastolytic substrate specificity. Given that chymase inhibitors have emerged as potential therapeutic agents for treating various inflammatory, allergic, and cardiovascular disorders, it is important to understand interspecies differences of the enzymes as well as the behavior of inhibitors with them. We have expressed chymases from humans, macaques, dogs, sheep (MCP2 and MCP3), guinea pigs, and hamsters (HAM1 and HAM2) in baculovirus-infected insect cells. The enzymes were purified and characterized with kinetic constants by using chromogenic substrates. We evaluated in vitro the potency of five nonpeptide inhibitors, originally targeted against human chymase. The inhibitors exhibited remarkable cross-species variation of sensitivity, with the greatest potency observed against human and macaque chymases, with K(i) values ranging from approximately 0.4 to 72nM. Compounds were 10-300-fold less potent, and in some instances ineffective, against chymases from the other species. The X-ray structure of one of the potent phosphinate inhibitors, JNJ-18054478, complexed with human chymase was solved at 1.8A resolution to further understand the binding mode. Subtle variations in the residues in the active site that are already known to influence chymase substrate specificity can also strongly affect the compound potency. The results are discussed in the context of selecting a suitable animal model to study compounds ultimately targeted for human chymase.
Asunto(s)
Quimasas/metabolismo , Animales , Baculoviridae/metabolismo , Cricetinae , Perros , Cobayas , Humanos , Macaca , Mastocitos/enzimología , Mastocitos/metabolismo , Serina Proteasas , Ovinos , Especificidad por Sustrato , Rayos XRESUMEN
Divergence of substrate specificity within the context of a common structural framework represents an important mechanism by which new enzyme activity naturally evolves. We present enzymological and x-ray structural data for hamster chymase-2 (HAM2) that provides a detailed explanation for the unusual hydrolytic specificity of this rodent alpha-chymase. In enzymatic characterization, hamster chymase-1 (HAM1) showed typical chymase proteolytic activity. In contrast, HAM2 exhibited atypical substrate specificity, cleaving on the carboxyl side of the P1 substrate residues Ala and Val, characteristic of elastolytic rather than chymotryptic specificity. The 2.5-A resolution crystal structure of HAM2 complexed to the peptidyl inhibitor MeOSuc-Ala-Ala-Pro-Ala-chloromethylketone revealed a narrow and shallow S1 substrate binding pocket that accommodated only a small hydrophobic residue (e.g. Ala or Val). The different substrate specificities of HAM2 and HAM1 are explained by changes in four S1 substrate site residues (positions 189, 190, 216, and 226). Of these, Asn(189), Val(190), and Val(216) form an easily identifiable triplet in all known rodent alpha-chymases that can be used to predict elastolytic specificity for novel chymase-like sequences. Phylogenetic comparison defines guinea pig and rabbit chymases as the closest orthologs to rodent alpha-chymases.
Asunto(s)
Quimasas/química , Quimasas/metabolismo , Secuencia de Aminoácidos , Animales , Baculoviridae/genética , Sitios de Unión/genética , Línea Celular , Quimasas/genética , Cricetinae , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Vectores Genéticos/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Filogenia , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por SustratoRESUMEN
A parallel approach to designing crystallization constructs for the c-FMS kinase domain was implemented, resulting in proteins suitable for structural studies. Sequence alignment and limited proteolysis were used to identify and eliminate unstructured and surface-exposed domains. A small library of chimeras was prepared in which the kinase insert domain of FMS was replaced with the kinase insert domain of previously crystallized receptor-tyrosine kinases. Characterization of the newly generated FMS constructs by enzymology and thermoshift assays demonstrated similar activities and compound binding to the FMS full-length cytoplasmic domain. Two chimeras were evaluated for crystallization in the presence and absence of a variety of ligands resulting in crystal structures, and leading to a successful structure-based drug design project for this important inflammation target.
Asunto(s)
Ingeniería de Proteínas , Proteínas Tirosina Quinasas Receptoras/síntesis química , Proteínas Tirosina Quinasas Receptoras/genética , Receptor de Factor Estimulante de Colonias de Macrófagos/química , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Cristalización , Citoplasma/química , Citoplasma/genética , Humanos , Datos de Secuencia Molecular , Proteínas Mutantes Quiméricas/síntesis química , Proteínas Mutantes Quiméricas/genética , Inhibidores de Proteínas Quinasas/química , Estructura Terciaria de Proteína/genética , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Receptor de Factor Estimulante de Colonias de Macrófagos/antagonistas & inhibidores , Alineación de Secuencia , SpodopteraRESUMEN
MAPK-activated protein kinase-2 (MAPKAPK2) regulates the synthesis of tumor necrosis factor and other cytokines and is a potential drug target for inflammatory diseases. Five protein constructs were produced in 4-10mg quantities per liter of culture media using baculovirus-infected insect cells and characterized for kinase activity, thermal stability, and ligand-binding affinity. Compared to construct 1-370, removal of the C-terminal autoinhibitory peptide in 1-338 resulted in a destabilized but partially active nonphosphorylated enzyme; phosphorylation of 1-338 by p38alpha further increased activity 12-fold. A putative constitutively active mutant, 1-370/T222E/T334E, was 6.3-fold less active than phosphorylated 1-370. ThermoFluor, an equilibrium ligand-binding assay, was used to measure nucleotide analogue affinity for various constructs. Binding of phosphorylated nucleotides was Mg(2+)-dependent. Residues 1-40 were required for high-affinity binding of ADP, ATPgammaS, staurosporine, and K252a. A mutation M138A rendered 1-370 susceptible to p38-inhibitors SB-203580 and SB-202190 with IC50 values of 17.4 and 14.1 microM, respectively. Taken together, these studies provide information on the mechanism of ligand-binding to MAPKAPK2 that can be used in the search for selective small-molecule inhibitors.
Asunto(s)
Proteínas Serina-Treonina Quinasas/análisis , Proteínas Serina-Treonina Quinasas/química , Sitios de Unión , Activación Enzimática , Estabilidad de Enzimas , Péptidos y Proteínas de Señalización Intracelular , Isoenzimas/análisis , Isoenzimas/química , Ligandos , Unión Proteica , Proteínas Recombinantes/análisis , Proteínas Recombinantes/química , Relación Estructura-Actividad , Temperatura , TermodinámicaRESUMEN
The discovery, SAR, and X-ray crystal structure of novel biarylaminoacyl-(S)-2-cyano-pyrrolidines and biarylaminoacylthiazolidines as potent inhibitors of dipeptidyl peptidase IV (DPP IV) are reported.