RESUMEN
The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46x10;{20} protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2+/-43.4 events, corresponding to an excess of 128.8+/-20.4+/-38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either nu_{e} and nu[over ]_{e} charged-current scattering or nu_{mu} neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are observed compared to an expectation of 385.9+/-35.7 events.
RESUMEN
We report the first observation of off-axis neutrino interactions in the MiniBooNE detector from the NuMI beam line at Fermilab. The MiniBooNE detector is located 745 m from the NuMI production target, at 110 mrad angle (6.3 degrees) with respect to the NuMI beam axis. Samples of charged-current quasielastic numicro and nue interactions are analyzed and found to be in agreement with expectation. This provides a direct verification of the expected pion and kaon contributions to the neutrino flux and validates the modeling of the NuMI off-axis beam.
RESUMEN
The MiniBooNE Collaboration reports a search for nu_{micro} and nu[over]_{micro} disappearance in the Deltam;{2} region of 0.5-40 eV;{2}. These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu_{micro} and nu[over]_{micro} energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu[over]_{micro} disappearance probes a region below Deltam;{2} = 40 eV;{2} never explored before.
RESUMEN
Using high statistics samples of charged-current numu interactions, the MiniBooNE [corrected] Collaboration reports a measurement of the single-charged-pion production to quasielastic cross section ratio on mineral oil (CH2), both with and without corrections for hadron reinteractions in the target nucleus. The result is provided as a function of neutrino energy in the range 0.4 GeV
RESUMEN
The observation of neutrino oscillations is clear evidence for physics beyond the standard model. To make precise measurements of this phenomenon, neutrino oscillation experiments, including MiniBooNE, require an accurate description of neutrino charged current quasielastic (CCQE) cross sections to predict signal samples. Using a high-statistics sample of nu_(mu) CCQE events, MiniBooNE finds that a simple Fermi gas model, with appropriate adjustments, accurately characterizes the CCQE events observed in a carbon-based detector. The extracted parameters include an effective axial mass, M_(A)(eff)=1.23+/-0.20 GeV, that describes the four-momentum dependence of the axial-vector form factor of the nucleon, and a Pauli-suppression parameter, kappa=1.019+/-0.011. Such a modified Fermi gas model may also be used by future accelerator-based experiments measuring neutrino oscillations on nuclear targets.
RESUMEN
The MiniBooNE Collaboration reports first results of a search for nu e appearance in a nu mu beam. With two largely independent analyses, we observe no significant excess of events above the background for reconstructed neutrino energies above 475 MeV. The data are consistent with no oscillations within a two-neutrino appearance-only oscillation model.
RESUMEN
We report on the extraction of R = sigma(L)/sigma(T) from CCFR nu(mu)-Fe and nu(mu)-Fe differential cross sections. The CCFR differential cross sections do not show the deviations from the QCD expectations that are seen in the CDHSW data at very low and very high x. R as measured in nu(mu) scattering is in agreement with R as measured in muon and electron scattering. All data on R for Q(2)>1 GeV(2) are in agreement with a NNLO QCD calculation which uses NNLO parton distribution functions and includes target mass effects. We report on the first measurements of R in the low x and Q(2)<1 GeV(2) region (where an anomalous large rise in R for nuclear targets has been observed by the HERMES Collaboration).
RESUMEN
Additional evidence for the rare kaon decay K+-->pi+nu(nu) has been found in a new data set with comparable sensitivity to the previously reported result. One new event was observed in the pion momentum region examined, 211
pi+nu(nu)) = 1.57(+1.75)(-0.82)x10(-10).
RESUMEN
We report on the extraction of the structure functions F2 and DeltaxF(3) = xF(nu)(3)-xF(nu;)(3) from CCFR nu(mu)-Fe and nu;(mu)-Fe differential cross sections. The extraction is performed in a physics model-independent (PMI) way. This first measurement of DeltaxF(3), which is useful in testing models of heavy charm production, is higher than current theoretical predictions. The ratio of the F2 (PMI) values measured in nu(mu) and mu scattering is in agreement (within 5%) with the predictions of next-to-leading-order parton distribution functions using massive charm production schemes, thus resolving the long-standing discrepancy between the two sets of data.
RESUMEN
A new structure function analysis of CCFR deep inelastic nu-N and nu-N scattering data is presented for previously unexplored kinematic regions down to Bjorken x = 0.0045 and Q(2) = 0.3 GeV(2). Comparisons to charged lepton scattering data from NMC and E665 experiments are made and the behavior of the structure function F(2)(nu)2 is studied in the limit Q(2)-->0.