Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853909

RESUMEN

BACKGROUND: MYBPC3 , encoding cardiac myosin binding protein-C (cMyBP-C), is the most mutated gene known to cause hypertrophic cardiomyopathy (HCM). However, since little is known about the underlying etiology, additional in vitro studies are crucial to defining the underlying molecular mechanisms. Accordingly, this study aimed to investigate the molecular mechanisms underlying the pathogenesis of HCM associated with a polymorphic variant (D389V) in MYBPC3 by using human-induced pluripotent stem cell (hiPSC)-derived cardiac organoids (hCOs). METHODS: The hiPSC-derived cardiomyocytes (hiPSC-CMs) and hCOs were generated from human subjects to define the molecular, cellular, and functional changes caused by the MYBPC3 D389V variant. This variant is associated with increased fractional shortening and is highly prevalent in South Asian descendants. Recombinant C0-C2, N'-region of cMyBP-C (wildtype and D389V), and myosin S2 proteins were also utilized to perform binding and motility assays in vitro . RESULTS: Confocal and electron microscopic analyses of hCOs generated from noncarriers (NC) and carriers of the MYBPC3 D389V variant revealed the presence of highly organized sarcomeres. Furthermore, functional experiments showed hypercontractility with increased contraction velocity, faster calcium cycling, and faster contractile kinetics in hCOs expressing MYBPC3 D389V than NC hCOs. Interestingly, significantly increased cMyBP-C phosphorylation in MYBPC3 D389V hCOs was observed, but without changes in total protein levels, in addition to higher oxidative stress and lower mitochondrial membrane potential (ΔΨm). Next, spatial mapping revealed the presence of endothelial cells, fibroblasts, macrophages, immune cells, and cardiomyocytes in the hCOs. The hypercontractile function was significantly improved after treatment with the myosin inhibitor mavacamten (CAMZYOS®) in MYBPC3 D389V hCOs. Lastly, various in vitro binding assays revealed a significant loss of affinity in the presence of MYBPC3 D389V with myosin S2 region as a likely mechanism for hypercontraction. CONCLUSIONS: Conceptually, we showed the feasibility of assessing the functional and molecular mechanisms of HCM using highly translatable hCOs through pragmatic experiments that led to determining the MYBPC3 D389V hypercontractile phenotype, which was rescued by administration of a myosin inhibitor. Novelty and Significance: What Is Known?: MYBPC3 mutations have been implicated in hypertrophic cardiomyopathy. D389V is a polymorphic variant of MYBPC3 predicted to be present in 53000 US South Asians owing to the founder effect. D389V carriers have shown evidence of hyperdynamic heart, and human-induced pluripotent stem cells (hiPSC)-derived cardiomyocytes with D389V show cellular hypertrophy and irregular calcium transients. The molecular mechanism by which the D389V variant develops pathological cardiac dysfunction remains to be conclusively determined.What New Information Does This Article Contribute ?: The authors leveraged a highly translational cardiac organoid model to explore the role of altered cardiac calcium handling and cardiac contractility as a common pathway leading to pathophysiological phenotypes in patients with early HCM. The MYBPC3 D389V -mediated pathological pathway is first studied here by comparing functional properties using three-dimensional cardiac organoids differentiated from hiPSC and determining the presence of hypercontraction. Our data demonstrate that faster sarcomere kinetics resulting from lower binding affinity between D389V-mutated cMyBP-C protein and myosin S2, as evidenced by in vitro studies, could cause hypercontractility which was rescued by administration of mavacamten (CAMZYOS®), a myosin inhibitor. In addition, hypercontractility causes secondary mitochondrial defects such as higher oxidative stress and lower mitochondrial membrane potential (ΔΨm), highlighting a possible early adaptive response to primary sarcomeric changes. Early treatment of MYBPC3 D389V carriers with mavacamten may prevent or reduce early HCM-related pathology. GRAPHICAL ABSTRACT: A graphical abstract is available for this article.

2.
Cells ; 10(2)2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567613

RESUMEN

Novel genetic variants exist in patients with hereditary neuromuscular disorders (NMD), including muscular dystrophy. These patients also develop cardiac manifestations. However, the association between these gene variants and cardiac abnormalities is understudied. To determine genetic modifiers and features of cardiac disease in NMD patients, we have reviewed electronic medical records of 651 patients referred to the Muscular Dystrophy Association Care Center at the University of Cincinnati and characterized the clinical phenotype of 14 patients correlating with their next-generation sequencing data. The data were retrieved from the electronic medical records of the 14 patients included in the current study and comprised neurologic and cardiac phenotype and genetic reports which included comparative genomic hybridization array and NGS. Novel associations were uncovered in the following eight patients diagnosed with Limb-girdle Muscular Dystrophy, Bethlem Myopathy, Necrotizing Myopathy, Charcot-Marie-Tooth Disease, Peripheral Polyneuropathy, and Valosin-containing Protein-related Myopathy. Mutations in COL6A1, COL6A3, SGCA, SYNE1, FKTN, PLEKHG5, ANO5, and SMCHD1 genes were the most common, and the associated cardiac features included bundle branch blocks, ventricular chamber dilation, septal thickening, and increased outflow track gradients. Our observations suggest that features of cardiac disease and modifying gene mutations in patients with NMD require further investigation to better characterize genotype-phenotype relationships.


Asunto(s)
Cardiomiopatías/genética , Genes Modificadores , Enfermedades Neuromusculares/genética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
Front Cardiovasc Med ; 8: 766339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004883

RESUMEN

Background: A 25-base pair (25bp) intronic deletion in the MYBPC3 gene enriched in South Asians (SAs) is a risk allele for late-onset left ventricular (LV) dysfunction, hypertrophy, and heart failure (HF) with several forms of cardiomyopathy. However, the effect of this variant on exercise parameters has not been evaluated. Methods: As a pilot study, 10 asymptomatic SA carriers of the MYBPC3 Δ25bp variant (52.9 ± 2.14 years) and 10 age- and gender-matched non-carriers (NCs) (50.1 ± 2.7 years) were evaluated at baseline and under exercise stress conditions using bicycle exercise echocardiography and continuous cardiac monitoring. Results: Baseline echocardiography parameters were not different between the two groups. However, in response to exercise stress, the carriers of Δ25bp had significantly higher LV ejection fraction (%) (CI: 4.57 ± 1.93; p < 0.0001), LV outflow tract peak velocity (m/s) (CI: 0.19 ± 0.07; p < 0.0001), and higher aortic valve (AV) peak velocity (m/s) (CI: 0.103 ± 0.08; p = 0.01) in comparison to NCs, and E/A ratio, a marker of diastolic compliance, was significantly lower in Δ25bp carriers (CI: 0.107 ± 0.102; p = 0.038). Interestingly, LV end-diastolic diameter (LVIDdia) was augmented in NCs in response to stress, while it did not increase in Δ25bp carriers (CI: 0.239 ± 0.125; p = 0.0002). Further, stress-induced right ventricular systolic excursion velocity s' (m/s), as a marker of right ventricle function, increased similarly in both groups, but tricuspid annular plane systolic excursion increased more in carriers (slope: 0.008; p = 0.0001), suggesting right ventricle functional differences between the two groups. Conclusions: These data support that MYBPC3 Δ25bp is associated with LV hypercontraction under stress conditions with evidence of diastolic impairment.

4.
Turk J Pediatr ; 52(6): 638-41, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21428197

RESUMEN

Langerhans cell histiocytosis (LCH) is a rare disorder of Langerhans cell with unknown etiology, which can uncommonly be associated with pneumothorax. A 14-month-old female is presented here who was referred to our center due to acute respiratory distress. Reticulonodular changes with multiple cystic areas were detected in chest X-ray, whilst extensive honeycombing and cystic changes were seen in high-resolution computed tomography scan. With deterioration of respiratory distress, chest X-ray was repeated, which revealed a unilateral pneumothorax. Meanwhile, some hyperpigmented skin plaques appeared on her skull and back. The biopsy results confirmed the diagnosis of proliferative histiocytosis. Prompt diagnosis of LCH and initiation of appropriate treatment in the patients who present with pneumothorax are vital to prevent further complications and even death in this group of patients.


Asunto(s)
Histiocitosis de Células de Langerhans/complicaciones , Neumotórax/complicaciones , Resultado Fatal , Femenino , Histiocitosis de Células de Langerhans/patología , Humanos , Hiperpigmentación/patología , Lactante , Tomografía Computarizada por Rayos X
5.
Biophys Rev ; 12(4): 1065-1084, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32656747

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by ventricular enlargement, diastolic dysfunction, and increased risk for sudden cardiac death. Sarcomeric genetic defects are the predominant known cause of HCM. In particular, mutations in the myosin-binding protein C gene (MYBPC3) are associated with ~ 40% of all HCM cases in which a genetic basis has been established. A decade ago, our group reported a 25-base pair deletion in intron 32 of MYBPC3 (MYBPC3Δ25bp) that is uniquely prevalent in South Asians and is associated with autosomal dominant cardiomyopathy. Although our studies suggest that this deletion results in left ventricular dysfunction, cardiomyopathies, and heart failure, the precise mechanism by which this variant predisposes to heart disease remains unclear. Increasingly appreciated, however, is the contribution of secondary risk factors, additional mutations, and lifestyle choices in augmenting or modifying the HCM phenotype in MYBPC3Δ25bp carriers. Therefore, the goal of this review article is to summarize the current research dedicated to understanding the molecular pathophysiology of HCM in South Asians with the MYBPC3Δ25bp variant. An emphasis is to review the latest techniques currently applied to explore the MYBPC3Δ25bp pathogenesis and to provide a foundation for developing new diagnostic strategies and advances in therapeutics.

6.
Environ Int ; 126: 804-815, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30792021

RESUMEN

BACKGROUND: The World Health Organization (WHO) and the International Labour Organization (ILO) are developing a joint methodology for estimating the national and global work-related burden of disease and injury (WHO/ILO joint methodology), with contributions from a large network of experts. In this paper, we present the protocol for two systematic reviews of parameters for estimating the number of deaths and disability-adjusted life years from melanoma and non-melanoma skin cancer (or keratinocyte carcinoma) from occupational exposure to solar ultraviolet radiation, to inform the development of the WHO/ILO joint methodology. OBJECTIVES: We aim to systematically review studies on occupational exposure to solar ultraviolet radiation (Systematic Review 1) and systematically review and meta-analyse estimates of the effect of occupational exposure to solar ultraviolet radiation on melanoma and non-melanoma skin cancer (Systematic Review 2), applying the Navigation Guide systematic review methodology as an organizing framework and conducting both systematic reviews in tandem and in a harmonized way. DATA SOURCES: Separately for Systematic Reviews 1 and 2, we will search electronic academic databases for potentially relevant records from published and unpublished studies, including Ovid Medline, PubMed, EMBASE, and Web of Science. We will also search electronic grey literature databases, Internet search engines and organizational websites; hand-search reference list of previous systematic reviews and included study records and consult additional experts. STUDY ELIGIBILITY AND CRITERIA: We will include working-age (≥15 years) workers in the formal and informal economy in any WHO and/or ILO Member State, but exclude children (<15 years) and unpaid domestic workers. For Systematic Review 1, we will include quantitative studies on the prevalence of relevant levels of occupational exposure to solar ultraviolet radiation (i.e. <0.33 SED/d and ≥0.33 SED/d) and of the total working time spent outdoors, stratified by country, sex, age and industrial sector or occupation, in the years 1960 to 2018. For Systematic Review 2, we will include randomized controlled trials, cohort studies, case-control studies and other non-randomized intervention studies with an estimate of the effect of any occupational exposure to solar ultraviolet radiation (i.e., ≥0.33 SED/d) on the prevalence of, incidence of or mortality due to melanoma and non-melanoma skin cancer, compared with the theoretical minimum risk exposure level (i.e. <0.33 SED/d). STUDY APPRAISAL AND SYNTHESIS METHODS: At least two review authors will independently screen titles and abstracts against the eligibility criteria at a first stage and full texts of potentially eligible records at a second stage, followed by extraction of data from qualifying studies. At least two review authors will assess the risk of bias and the quality of evidence, using the most suited tools currently available. For Systematic Review 2, if feasible, we will combine relative risks using meta-analysis. We will report results using the guidelines for accurate and transparent health estimates reporting (GATHER) for Systematic Review 1 and the preferred reporting items for systematic reviews and meta-analyses guidelines (PRISMA) for Systematic Review 2. PROSPERO REGISTRATION NUMBER: CRD42018094817.


Asunto(s)
Melanoma/etiología , Metaanálisis como Asunto , Enfermedades Profesionales/etiología , Exposición Profesional/análisis , Neoplasias Cutáneas/etiología , Revisiones Sistemáticas como Asunto , Rayos Ultravioleta/efectos adversos , Costo de Enfermedad , Estudios Transversales , Humanos , Años de Vida Ajustados por Calidad de Vida , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA