Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 83(5): 715-730.e6, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868189

RESUMEN

Transcriptional enhancers have been extensively characterized, but cis-regulatory elements involved in acute gene repression have received less attention. Transcription factor GATA1 promotes erythroid differentiation by activating and repressing distinct gene sets. Here, we study the mechanism by which GATA1 silences the proliferative gene Kit during murine erythroid cell maturation and define stages from initial loss of activation to heterochromatinization. We find that GATA1 inactivates a potent upstream enhancer but concomitantly creates a discrete intronic regulatory region marked by H3K27ac, short noncoding RNAs, and de novo chromatin looping. This enhancer-like element forms transiently and serves to delay Kit silencing. The element is ultimately erased via the FOG1/NuRD deacetylase complex, as revealed by the study of a disease-associated GATA1 variant. Hence, regulatory sites can be self-limiting by dynamic co-factor usage. Genome-wide analyses across cell types and species uncover transiently active elements at numerous genes during repression, suggesting that modulation of silencing kinetics is widespread.


Asunto(s)
Estudio de Asociación del Genoma Completo , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Ratones , Intrones , Diferenciación Celular , Silenciador del Gen , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2
2.
Mol Cell ; 81(5): 983-997.e7, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33539786

RESUMEN

Gene transcription occurs via a cycle of linked events, including initiation, promoter-proximal pausing, and elongation of RNA polymerase II (Pol II). A key question is how transcriptional enhancers influence these events to control gene expression. Here, we present an approach that evaluates the level and change in promoter-proximal transcription (initiation and pausing) in the context of differential gene expression, genome-wide. This combinatorial approach shows that in primary cells, control of gene expression during differentiation is achieved predominantly via changes in transcription initiation rather than via release of Pol II pausing. Using genetically engineered mouse models, deleted for functionally validated enhancers of the α- and ß-globin loci, we confirm that these elements regulate Pol II recruitment and/or initiation to modulate gene expression. Together, our data show that gene expression during differentiation is regulated predominantly at the level of initiation and that enhancers are key effectors of this process.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , ARN Polimerasa II/genética , Iniciación de la Transcripción Genética , Globinas alfa/genética , Globinas beta/genética , Animales , Diferenciación Celular , Exones , Feto , Regulación de la Expresión Génica , Biblioteca de Genes , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Intrones , Células K562 , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Polimerasa II/metabolismo , Transducción de Señal , Globinas alfa/deficiencia , Globinas beta/deficiencia
3.
Nat Methods ; 20(7): 1037-1047, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37336949

RESUMEN

Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve 'active' regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain 'inactive' regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies.


Asunto(s)
Cromatina , Genoma , Animales , Ratones , Cromatina/genética , Mapeo Cromosómico/métodos , Cromosomas , Genómica/métodos
4.
Trends Genet ; 38(4): 395-408, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34753603

RESUMEN

Deciphering the process by which hundreds of distinct cell types emerge from a single zygote to form a complex multicellular organism remains one of the greatest challenges in biological research. Enhancers are known to be central to cell type-specific gene expression, yet many questions regarding how these genomic elements interact both temporally and spatially with other cis- and trans-acting factors to control transcriptional activity during differentiation and development remain unanswered. Here, we review our current understanding of the role of enhancers and their interactions in this context and highlight recent progress achieved with experimental methods of unprecedented resolution.


Asunto(s)
Elementos de Facilitación Genéticos , Transactivadores , Diferenciación Celular/genética , Regiones Promotoras Genéticas , Transactivadores/genética
5.
Nature ; 543(7646): 519-524, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28273065

RESUMEN

The organization of the genome in the nucleus and the interactions of genes with their regulatory elements are key features of transcriptional control and their disruption can cause disease. Here we report a genome-wide method, genome architecture mapping (GAM), for measuring chromatin contacts and other features of three-dimensional chromatin topology on the basis of sequencing DNA from a large collection of thin nuclear sections. We apply GAM to mouse embryonic stem cells and identify enrichment for specific interactions between active genes and enhancers across very large genomic distances using a mathematical model termed SLICE (statistical inference of co-segregation). GAM also reveals an abundance of three-way contacts across the genome, especially between regions that are highly transcribed or contain super-enhancers, providing a level of insight into genome architecture that, owing to the technical limitations of current technologies, has previously remained unattainable. Furthermore, GAM highlights a role for gene-expression-specific contacts in organizing the genome in mammalian nuclei.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , Elementos de Facilitación Genéticos/genética , Genoma/genética , Animales , Cromatina/química , Epigénesis Genética , Masculino , Ratones , Modelos Genéticos , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Análisis de Secuencia de ADN , Transcripción Genética/genética
6.
Haematologica ; 106(11): 2960-2970, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33121234

RESUMEN

The investigation of inherited disorders of erythropoiesis has elucidated many of the principles underlying the production of normal red blood cells and how this is perturbed in human disease. Congenital Dyserythropoietic Anaemia type 1 (CDA-I) is a rare form of anaemia caused by mutations in two genes of unknown function: CDAN1 and CDIN1 (previously called C15orf41), whilst in some cases, the underlying genetic abnormality is completely unknown. Consequently, the pathways affected in CDA-I remain to be discovered. To enable detailed analysis of this rare disorder we have validated a culture system which recapitulates all of the cardinal haematological features of CDA-I, including the formation of the pathognomonic 'spongy' heterochromatin seen by electron microscopy. Using a variety of cell and molecular biological approaches we discovered that erythroid cells in this condition show a delay during terminal erythroid differentiation, associated with increased proliferation and widespread changes in chromatin accessibility. We also show that the proteins encoded by CDAN1 and CDIN1 are enriched in nucleoli which are structurally and functionally abnormal in CDA-I. Together these findings provide important pointers to the pathways affected in CDA-I which for the first time can now be pursued in the tractable culture system utilised here.


Asunto(s)
Anemia Diseritropoyética Congénita , Anemia Diseritropoyética Congénita/diagnóstico , Anemia Diseritropoyética Congénita/genética , Células Eritroides , Eritropoyesis , Glicoproteínas/genética , Humanos , Proteínas Nucleares/genética
7.
Nature ; 547(7661): 34-35, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28682328
8.
Bioessays ; 38(9): 881-93, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27452946

RESUMEN

Enhancers can stimulate transcription by a number of different mechanisms which control different stages of the transcription cycle of their target genes, from recruitment of the transcription machinery to elongation by RNA polymerase. These mechanisms may not be mutually exclusive, as a single enhancer may act through different pathways by binding multiple transcription factors. Multiple enhancers may also work together to regulate transcription of a shared target gene. Most of the evidence supporting different enhancer mechanisms comes from the study of single genes, but new high-throughput experimental frameworks offer the opportunity to integrate and generalize disparate mechanisms identified at single genes. This effort is especially important if we are to fully understand how sequence variation within enhancers contributes to human disease.


Asunto(s)
Elementos de Facilitación Genéticos , Activación Transcripcional , Animales
9.
J Clin Invest ; 133(7)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36809258

RESUMEN

Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.


Asunto(s)
Deficiencia GATA2 , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Humanos , Deficiencia GATA2/genética , Interleucina-6/genética , Hematopoyesis/genética , Expresión Génica , Dedos de Zinc/genética , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo
10.
PLoS One ; 17(1): e0261950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34995303

RESUMEN

Mouse embryonic stem cells (mESCs) can be manipulated in vitro to recapitulate the process of erythropoiesis, during which multipotent cells undergo lineage specification, differentiation and maturation to produce erythroid cells. Although useful for identifying specific progenitors and precursors, this system has not been fully exploited as a source of cells to analyse erythropoiesis. Here, we establish a protocol in which characterised erythroblasts can be isolated in a scalable manner from differentiated embryoid bodies (EBs). Using transcriptional and epigenetic analysis, we demonstrate that this system faithfully recapitulates normal primitive erythropoiesis and fully reproduces the effects of natural and engineered mutations seen in primary cells obtained from mouse models. We anticipate this system to be of great value in reducing the time and costs of generating and maintaining mouse lines in a number of research scenarios.


Asunto(s)
Diferenciación Celular , Cuerpos Embrioides/metabolismo , Eritroblastos/metabolismo , Eritropoyesis , Modelos Biológicos , Células Madre Embrionarias de Ratones/metabolismo , Animales , Línea Celular , Cuerpos Embrioides/citología , Eritroblastos/citología , Ratones , Células Madre Embrionarias de Ratones/citología
11.
Curr Opin Genet Dev ; 67: 18-24, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33221670

RESUMEN

The mammalian globin gene clusters provide a paradigm for studying the relationship between genome structure and function. As blood stem cells undergo lineage specification and differentiation to form red blood cells, the chromatin structure and expression of the α-globin cluster change. The gradual activation of the α-globin genes in well-defined cell populations has enabled investigation of the structural and functional roles of its enhancers, promoters and boundary elements. Recent studies of gene regulatory processes involving these elements at the mouse α-globin cluster have brought new insights into the general principles underlying the three-dimensional structure of the genome and its relationship to gene expression throughout time.


Asunto(s)
Cromatina/genética , Genoma/genética , Regiones Promotoras Genéticas/genética , Globinas alfa/genética , Animales , Regulación de la Expresión Génica/genética , Ratones , Secuencias Reguladoras de Ácidos Nucleicos
12.
Nat Commun ; 12(1): 531, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483495

RESUMEN

Chromosome conformation capture (3C) provides an adaptable tool for studying diverse biological questions. Current 3C methods generally provide either low-resolution interaction profiles across the entire genome, or high-resolution interaction profiles at limited numbers of loci. Due to technical limitations, generation of reproducible high-resolution interaction profiles has not been achieved at genome-wide scale. Here, to overcome this barrier, we systematically test each step of 3C and report two improvements over current methods. We show that up to 30% of reporter events generated using the popular in situ 3C method arise from ligations between two individual nuclei, but this noise can be almost entirely eliminated by isolating intact nuclei after ligation. Using Nuclear-Titrated Capture-C, we generate reproducible high-resolution genome-wide 3C interaction profiles by targeting 8055 gene promoters in erythroid cells. By pairing high-resolution 3C interaction calls with nascent gene expression we interrogate the role of promoter hubs and super-enhancers in gene regulation.


Asunto(s)
Núcleo Celular/genética , Cromatina/genética , Células Eritroides/metabolismo , Genoma Humano/genética , Estudio de Asociación del Genoma Completo/métodos , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Células Cultivadas , Mapeo Cromosómico/métodos , Biología Computacional/métodos , Regulación de la Expresión Génica , Genómica/métodos , Humanos , Ratones Endogámicos C57BL , Ratones Endogámicos CBA
13.
Nat Commun ; 12(1): 4439, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290235

RESUMEN

The α- and ß-globin loci harbor developmentally expressed genes, which are silenced throughout post-natal life. Reactivation of these genes may offer therapeutic approaches for the hemoglobinopathies, the most common single gene disorders. Here, we address mechanisms regulating the embryonically expressed α-like globin, termed ζ-globin. We show that in embryonic erythroid cells, the ζ-gene lies within a ~65 kb sub-TAD (topologically associating domain) of open, acetylated chromatin and interacts with the α-globin super-enhancer. By contrast, in adult erythroid cells, the ζ-gene is packaged within a small (~10 kb) sub-domain of hypoacetylated, facultative heterochromatin within the acetylated sub-TAD and that it no longer interacts with its enhancers. The ζ-gene can be partially re-activated by acetylation and inhibition of histone de-acetylases. In addition to suggesting therapies for severe α-thalassemia, these findings illustrate the general principles by which reactivation of developmental genes may rescue abnormalities arising from mutations in their adult paralogues.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , Activación Transcripcional , Globinas zeta/genética , Acetilación , Animales , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Células Eritroides/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ratones , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional/efectos de los fármacos , Globinas alfa/genética
14.
Cancer Res ; 80(23): 5245-5256, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33115807

RESUMEN

Hypoxia is a common phenomenon in solid tumors and is strongly linked to hallmarks of cancer. Recent evidence has shown that hypoxia promotes local immune suppression. Type I IFN supports cytotoxic T lymphocytes by stimulating the maturation of dendritic cells and enhancing their capacity to process and present antigens. However, little is known about the relationship between hypoxia and the type I IFN pathway, which comprises the sensing of double-stranded RNA and DNA (dsRNA/dsDNA) followed by IFNα/ß secretion and transcriptional activation of IFN-stimulated genes (ISG). In this study, we determined the effects of hypoxia on the type I IFN pathway in breast cancer and the mechanisms involved. In cancer cell lines and xenograft models, mRNA and protein expressions of the type I IFN pathway were downregulated under hypoxic conditions. This pathway was suppressed at each level of signaling, from the dsRNA sensors RIG-I and MDA5, the adaptor MAVS, transcription factors IRF3, IRF7, and STAT1, and several ISG including RIG-I, IRF7, STAT1, and ADAR-p150. Importantly, IFN secretion was reduced under hypoxic conditions. HIF1α- and HIF2α-mediated regulation of gene expression did not explain most of the effects. However, ATAC-seq data revealed in hypoxia that peaks with STAT1 and IRF3 motifs had decreased accessibility. Collectively, these results indicate that hypoxia leads to an overall downregulation of the type I IFN pathway due to repressed transcription and lower chromatin accessibility in an HIF1/2α-independent manner, which could contribute to immunosuppression in hypoxic tumors. SIGNIFICANCE: These findings characterize a new mechanism of immunosuppression by hypoxia via downregulation of the type I IFN pathway and its autocrine/paracrine effects on tumor growth.


Asunto(s)
Interferón Tipo I/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Hipoxia Tumoral , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/genética , Ratones , ARN Mensajero , Transducción de Señal/inmunología , Análisis de la Célula Individual , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Nat Commun ; 11(1): 2722, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483172

RESUMEN

Mammalian gene expression patterns are controlled by regulatory elements, which interact within topologically associating domains (TADs). The relationship between activation of regulatory elements, formation of structural chromatin interactions and gene expression during development is unclear. Here, we present Tiled-C, a low-input chromosome conformation capture (3C) technique. We use this approach to study chromatin architecture at high spatial and temporal resolution through in vivo mouse erythroid differentiation. Integrated analysis of chromatin accessibility and single-cell expression data shows that regulatory elements gradually become accessible within pre-existing TADs during early differentiation. This is followed by structural re-organization within the TAD and formation of specific contacts between enhancers and promoters. Our high-resolution data show that these enhancer-promoter interactions are not established prior to gene expression, but formed gradually during differentiation, concomitant with progressive upregulation of gene activity. Together, these results provide new insight into the close, interdependent relationship between chromatin architecture and gene regulation during development.


Asunto(s)
Diferenciación Celular/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Genoma/genética , Regiones Promotoras Genéticas/genética , Células Madre/metabolismo , Animales , Células Cultivadas , Cromatina/genética , Cromosomas de los Mamíferos/genética , Femenino , Perfilación de la Expresión Génica/métodos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre/citología
16.
Dev Cell ; 39(5): 523-524, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27923117

RESUMEN

Enhancers regulate the expression of target genes across large genomic distances, but it is unclear how recently discovered topological domains affect this regulation. Reporting in this issue of Developmental Cell, Symmons et al. (2016) show that the endogenous Shh topological domain promotes functional interactions between Shh and its remote enhancer.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA