Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 108(11): 2195-2204, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34715011

RESUMEN

Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.


Asunto(s)
Alelos , Pleiotropía Genética , Mitocondrias/enzimología , ARN Mitocondrial/genética , ARN de Transferencia/genética , Ribonucleasa P/genética , Adulto , Femenino , Humanos , Masculino , Linaje
2.
Am J Hum Genet ; 104(5): 994-1006, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051115

RESUMEN

Congenital lower urinary-tract obstruction (LUTO) is caused by anatomical blockage of the bladder outflow tract or by functional impairment of urinary voiding. About three out of 10,000 pregnancies are affected. Although several monogenic causes of functional obstruction have been defined, it is unknown whether congenital LUTO caused by anatomical blockage has a monogenic cause. Exome sequencing in a family with four affected individuals with anatomical blockage of the urethra identified a rare nonsense variant (c.2557C>T [p.Arg853∗]) in BNC2, encoding basonuclin 2, tracking with LUTO over three generations. Re-sequencing BNC2 in 697 individuals with LUTO revealed three further independent missense variants in three unrelated families. In human and mouse embryogenesis, basonuclin 2 was detected in lower urinary-tract rudiments. In zebrafish embryos, bnc2 was expressed in the pronephric duct and cloaca, analogs of the mammalian lower urinary tract. Experimental knockdown of Bnc2 in zebrafish caused pronephric-outlet obstruction and cloacal dilatation, phenocopying human congenital LUTO. Collectively, these results support the conclusion that variants in BNC2 are strongly implicated in LUTO etiology as a result of anatomical blockage.


Asunto(s)
Aberraciones Cromosómicas , Proteínas de Unión al ADN/genética , Enfermedades Fetales/genética , Mutación , Obstrucción del Cuello de la Vejiga Urinaria/congénito , Obstrucción del Cuello de la Vejiga Urinaria/genética , Adulto , Animales , Niño , Femenino , Enfermedades Fetales/patología , Genes Dominantes , Edad Gestacional , Humanos , Masculino , Ratones , Persona de Mediana Edad , Linaje , Embarazo , Obstrucción del Cuello de la Vejiga Urinaria/patología , Pez Cebra
3.
Clin Genet ; 101(2): 255-259, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34713892

RESUMEN

The developmental disorder Burn-McKeown Syndrome (BMKS) is characterised by choanal atresia and specific craniofacial features. BMKS is caused by biallelic variants in the pre-messenger RNA splicing factor TXNL4A. Most patients have a loss-of-function variant in trans with a 34-base pair (bp) deletion (type 1 Δ34) in the promoter region. Here, we identified two patients with BMKS. One individual has a TXNL4A c.93_94delCC, p.His32Argfs *21 variant combined with a type 1 Δ34 promoter deletion. The other has an intronic TXNL4A splice site variant (c.258-3C>G) and a type 1 Δ34 promoter deletion. We show the c.258-3C>G variant and a previously reported c.258-2A>G variant, cause skipping of the final exon of TXNL4A in a minigene splicing assay. Furthermore, we identify putative transcription factor binding sites within the 56 bp of the TXNL4A promoter affected by the type 1 and type 2 Δ34 and use dual luciferase assays to identify a 22 bp repeated motif essential for TXNL4A expression within this promoter region. We propose that additional variants affecting critical transcription factor binding nucleotides within the 22 bp repeated motif could be relevant to BMKS aetiology. Finally, our data emphasises the need to analyse the non-coding sequence in individuals where a single likely pathogenic coding variant is identified in an autosomal recessive disorder consistent with the clinical presentation.


Asunto(s)
Atresia de las Coanas/diagnóstico , Atresia de las Coanas/genética , Sordera/congénito , Genotipo , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Mutación , Ribonucleoproteína Nuclear Pequeña U5/genética , Alelos , Sitios de Unión , Sordera/diagnóstico , Sordera/genética , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Linaje , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Factores de Transcripción/metabolismo
4.
Clin Genet ; 101(1): 127-133, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34612517

RESUMEN

Only two families have been reported with biallelic TMEM260 variants segregating with structural heart defects and renal anomalies syndrome (SHDRA). With a combination of genome, exome sequencing and RNA studies, we identified eight individuals from five families with biallelic TMEM260 variants. Variants included one multi-exon deletion, four nonsense/frameshifts, two splicing changes and one missense change. Together with the published cases, analysis of clinical data revealed ventricular septal defects (12/12), mostly secondary to truncus arteriosus (10/12), elevated creatinine levels (6/12), horse-shoe kidneys (1/12) and renal cysts (1/12) in patients. Three pregnancies were terminated on detection of severe congenital anomalies. Six patients died between the ages of 6 weeks and 5 years. Using a range of stringencies, carrier frequency for SHDRA was estimated at 0.0007-0.007 across ancestries. In conclusion, this study confirms the genetic basis of SHDRA, expands its known mutational spectrum and clarifies its clinical features. We demonstrate that SHDRA is a severe condition associated with substantial mortality in early childhood and characterised by congenital cardiac malformations with a variable renal phenotype.


Asunto(s)
Alelos , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Proteínas de la Membrana/genética , Tronco Arterial/anomalías , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Sustitución de Aminoácidos , Familia , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Heterocigoto , Humanos , Fenotipo
5.
Br J Dermatol ; 187(6): 948-961, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35986704

RESUMEN

BACKGROUND: Bazex-Dupré-Christol syndrome (BDCS; MIM301845) is a rare X-linked dominant genodermatosis characterized by follicular atrophoderma, congenital hypotrichosis and multiple basal cell carcinomas (BCCs). Previous studies have linked BDCS to an 11·4-Mb interval on chromosome Xq25-q27.1. However, the genetic mechanism of BDCS remains an open question. OBJECTIVES: To investigate the genetic aetiology and molecular mechanisms underlying BDCS. METHODS: We ascertained multiple individuals from eight unrelated families affected with BDCS (F1-F8). Whole-exome (F1 and F2) and genome sequencing (F3) were performed to identify putative disease-causing variants within the linkage region. Array comparative genomic hybridization and quantitative polymerase chain reaction (PCR) were used to explore copy number variations, followed by long-range gap PCR and Sanger sequencing to amplify the duplication junctions and to define the head-tail junctions. Hi-C was performed on dermal fibroblasts from two affected individuals with BDCS and one control. Public datasets and tools were used to identify regulatory elements and transcription factor binding sites within the minimal duplicated region. Immunofluorescence was performed in hair follicles, BCCs and trichoepitheliomas from patients with BDCS and sporadic BCCs. The ACTRT1 variant c.547dup (p.Met183Asnfs*17), previously proposed to cause BDCS, was evaluated with t allele frequency calculator. RESULTS: In eight families with BDCS, we identified overlapping 18-135-kb duplications (six inherited and two de novo) at Xq26.1, flanked by ARHGAP36 and IGSF1. Hi-C showed that the duplications did not affect the topologically associated domain, but may alter the interactions between flanking genes and putative enhancers located in the minimal duplicated region. We detected ARHGAP36 expression near the control hair follicular stem cell compartment, and found increased ARHGAP36 levels in hair follicles in telogen, in BCCs and in trichoepitheliomas from patients with BDCS. ARHGAP36 was also detected in sporadic BCCs from individuals without BDCS. Our modelling showed the predicted maximum tolerated minor allele frequency of ACTRT1 variants in control populations to be orders of magnitude higher than expected for a high-penetrant ultra-rare disorder, suggesting loss of function of ACTRT1 variants to be an unlikely cause for BDCS. CONCLUSIONS: Noncoding Xq26.1 duplications cause BDCS. The BDCS duplications most likely lead to dysregulation of ARHGAP36. ARHGAP36 is a potential therapeutic target for both inherited and sporadic BCCs. What is already known about this topic? Bazex-Dupré-Christol syndrome (BDCS) is a rare X-linked basal cell carcinoma susceptibility syndrome linked to an 11·4-Mb interval on chromosome Xq25-q27.1. Loss-of-function variants in ACTRT1 and its regulatory elements were suggested to cause BDCS. What does this study add? BDCS is caused by small tandem noncoding intergenic duplications at chromosome Xq26.1. The Xq26.1 BDCS duplications likely dysregulate ARHGAP36, the flanking centromeric gene. ACTRT1 loss-of-function variants are unlikely to cause BDCS. What is the translational message? This study provides the basis for accurate genetic testing for BDCS, which will aid precise diagnosis and appropriate surveillance and clinical management. ARHGAP36 may be a novel therapeutic target for all forms of sporadic basal cell carcinomas.


Asunto(s)
Carcinoma Basocelular , Hipotricosis , Humanos , Carcinoma Basocelular/patología , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN/genética , Células Germinativas/patología , Hipotricosis/genética , Hipotricosis/patología , Proteínas de Microfilamentos
6.
Am J Hum Genet ; 103(2): 213-220, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30075112

RESUMEN

Pathogenic variants in BRCA1 or BRCA2 are identified in ∼20% of families with multiple individuals affected by early-onset breast and/or ovarian cancer. Extensive searches for additional highly penetrant genes or alternative mutational mechanisms altering BRCA1 or BRCA2 have not explained the missing heritability. Here, we report a dominantly inherited 5' UTR variant associated with epigenetic BRCA1 silencing due to promoter hypermethylation in two families affected by breast and ovarian cancer. BRCA1 promoter methylation of ten CpG dinucleotides in families who are affected by breast and/or ovarian cancer but do not have germline BRCA1 or BRCA2 pathogenic variants was assessed by pyrosequencing and clonal bisulfite sequencing. RNA and DNA sequencing of BRCA1 from lymphocytes was undertaken to establish allelic expression and the presence of germline variants. BRCA1 promoter hypermethylation was identified in 2 of 49 families in which multiple women are affected by grade 3 breast cancer or high-grade serous ovarian cancer. Soma-wide BRCA1 promoter hypermethylation was confirmed in blood, buccal mucosa, and hair follicles. Pyrosequencing showed that DNA was ∼50% methylated, consistent with the silencing of one allele, which was confirmed by clonal bisulfite sequencing. RNA sequencing revealed the allelic loss of BRCA1 expression in both families and that this loss of expression segregated with the heterozygous variant c.-107A>T in the BRCA1 5' UTR. Our results establish a mechanism whereby familial breast and ovarian cancer is caused by an in cis 5' UTR variant associated with epigenetic silencing of the BRCA1 promoter in two independent families. We propose that methylation analyses be undertaken to establish the frequency of this mechanism in families affected by early-onset breast and/or ovarian cancer without a BRCA1 or BRCA2 pathogenic variant.


Asunto(s)
Regiones no Traducidas 5'/genética , Proteína BRCA1/genética , Neoplasias de la Mama/genética , Metilación de ADN/genética , Mutación de Línea Germinal/genética , Neoplasias Ováricas/genética , Adulto , Anciano , Anciano de 80 o más Años , Proteína BRCA2/genética , Epigénesis Genética/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética
7.
Reprod Biomed Online ; 43(5): 899-902, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34497033

RESUMEN

RESEARCH QUESTION: Does a genetic condition underlie the diagnosis of primary ovarian insufficiency (POI) in a 21-year-old woman with primary amenorrhoea? DESIGN: A karyotype and genetic testing for Fragile X syndrome was undertaken. A next-generation sequencing panel of 24 genes associated with syndromal and non-syndromal POI was conducted. RESULTS: A nonsense variant c.1336G>T, p.(Glu446Ter) and whole gene deletion in STAG3 were identified. CONCLUSIONS: Biallelic loss of function variants in STAG3 are associated with primary ovarian failure type 8 and are a rare cause of POI.


Asunto(s)
Proteínas de Ciclo Celular/genética , Mutación , Insuficiencia Ovárica Primaria/genética , Amenorrea/genética , Codón sin Sentido/genética , Femenino , Eliminación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cariotipificación , Linaje , Pubertad/genética , Adulto Joven
8.
Clin Genet ; 96(6): 515-520, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31441039

RESUMEN

CHRM3 codes for the M3 muscarinic acetylcholine receptor that is located on the surface of smooth muscle cells of the detrusor, the muscle that effects urinary voiding. Previously, we reported brothers in a family affected by a congenital prune belly-like syndrome with mydriasis due to homozygous CHRM3 frameshift variants. In this study, we describe two sisters with bladders that failed to empty completely and pupils that failed to constrict fully in response to light, who are homozygous for the missense CHRM3 variant c.352G > A; p.(Gly118Arg). Samples were not available for genotyping from their brother, who had a history of multiple urinary tract infections and underwent surgical bladder draining in the first year of life. He died at the age of 6 years. This is the first independent report of biallelic variants in CHRM3 in a family with a rare serious bladder disorder associated with mydriasis and provides important evidence of this association.


Asunto(s)
Mutación Missense/genética , Receptor Muscarínico M3/genética , Enfermedades de la Vejiga Urinaria/genética , Secuencia de Bases , Familia , Femenino , Homocigoto , Humanos , Malasia , Masculino
9.
Am J Med Genet A ; 179(3): 404-409, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30628148

RESUMEN

The bladder exstrophy-epispadias complex (BEEC) comprises of a spectrum of anterior midline defects, all affecting the lower urinary tract, the external genitalia, and the bony pelvis. In extreme cases, the gastrointestinal tract is also affected. The pathogenesis of BEEC is unclear but chromosomal aberrations have been reported. In particular, duplications of 22q11.2 have been identified in eight unrelated individuals with BEEC. The current study aimed to identify chromosomal copy number variants in BEEC. Analyses was performed using the Affymetrix Genome-wide SNP6.0 assay in 92 unrelated patients cared for by two UK pediatric urology centers. Three individuals had a 22q11.2 duplication, a significantly higher number than that found in a control group of 12,500 individuals with developmental delay who had undergone microarray testing (p < .0001). Sequencing of CRKL, implicated in renal tract malformations in DiGeorge syndrome critical region at 22q11, in 89 individuals with BEEC lacking 22q11 duplications revealed no pathogenic variants. To date, 22q11.2 duplication is the genetic variant most commonly associated with BEEC. This is consistent with the hypothesis that altered expression of a single, yet to be defined, gene therein is critical to the pathogenesis of this potentially devastating congenital disorder.


Asunto(s)
Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Extrofia de la Vejiga/diagnóstico , Extrofia de la Vejiga/genética , Duplicación Cromosómica/genética , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Predisposición Genética a la Enfermedad , Proteínas Adaptadoras Transductoras de Señales/genética , Cromosomas Humanos Par 22/genética , Variaciones en el Número de Copia de ADN , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Oportunidad Relativa , Fenotipo , Polimorfismo de Nucleótido Simple , Reino Unido
10.
Mol Cell Biochem ; 393(1-2): 301-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24833463

RESUMEN

Production of heat shock protein 70 (HSP70/HSPA) is induced by a wide range of cellular stress conditions, such as cancer and hypoxia, with production also being linked to tumourigenesis. HSPA mRNA transcripts and proteins were examined in three human glioma cell lines, representing astrocytoma, oligodendroglioma and glioblastoma, plus 18 clinical brain tissue samples. GAPDH was used as a control gene throughout these studies and exhibited a consistent level of expression in a normal astrocyte cell line, tumourous cell lines and tissue samples. In contrast, the average HSPA mRNA copy numbers detected in glioblastoma tissue were between 1.8- and 8.8-fold higher than in lower grade glioma and control tissue, respectively, which is suggestive of a grade-related transcription profile. Similar patterns of grade-related expression were also observed in glioma cell lines. This study indicates for the first time that HSPA expression in glioma cells may possibly be grade related, and hence could have potential as a prognostic marker.


Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Proteínas HSP70 de Choque Térmico/biosíntesis , Pronóstico , Adolescente , Adulto , Anciano , Biomarcadores de Tumor/biosíntesis , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/diagnóstico , Glioma/patología , Proteínas HSP70 de Choque Térmico/genética , Humanos , Masculino , Persona de Mediana Edad , ARN Mensajero/biosíntesis , Análisis de Supervivencia
11.
Mol Cell Biochem ; 394(1-2): 53-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24833466

RESUMEN

Production of heat shock protein 70 (HSP70/HSPA) is induced by a wide range of cellular stress conditions, such as cancer and hypoxia. This study investigated the level of HSPA gene expression in human cell lines exposed to hypoxic conditions. Three human glioma cell lines were selected for this study, each representing different types of glioma (astrocytoma, oligodendroglioma and glioblastoma), with a normal human astrocyte cell line used as a control. HSPA RNA transcripts and proteins were examined in these samples using qRT-PCR, immunofluorescence and flow cytometry techniques. The average HSPA mRNA copy numbers detected in three glioma cell lines were approximately sixfold higher than in a normal astrocyte cell line. The expression of HSPA was induced in normal cell lines immediately after exposure to hypoxia with 33% of cells exhibiting expression. However, the effects of hypoxia on gene expression were marginal in glioma cells, due to the already increased levels of HSPA with both pre- and post-hypoxia samples showing expression in approximately 90% of cells. These results show that whilst the stress caused by both cancer and hypoxia induce HSPA expression the underlying imprint of tumourgenesis leads to sustained expression.


Asunto(s)
Neoplasias Encefálicas/enzimología , Glioma/enzimología , Proteínas HSP70 de Choque Térmico/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Hipoxia de la Célula , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Proteínas HSP70 de Choque Térmico/genética , Humanos , ARN Mensajero/metabolismo , Factores de Tiempo , Regulación hacia Arriba
12.
J Clin Transl Sci ; 7(1): e115, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250990

RESUMEN

Patient and public involvement (PPI) must be more frequently embedded within clinical research to ensure translational outcomes are patient-led and meet patient needs. Active partnerships with patients and public groups are an important opportunity to hear patient voices, understand patient needs, and inform future research avenues. A hereditary renal cancer (HRC) PPI group was developed with the efforts of patient participants (n = 9), pooled from recruits within the early detection for HRC pilot study, working in collaboration with researchers and healthcare professionals (n = 8). Patient participants had HRC conditions including Von Hippel-Lindau (n = 3) and Hereditary Leiomyomatosis and Renal Cell Carcinoma (n = 5), and public participants included two patient Trustees (n = 2) from VHL UK & Ireland Charity. Discussions among the enthusiastic participants guided the development of a novel patient information sheet for HRC patients. This communication tool was designed to aid patients when informing family members about their diagnoses and the wider implications for relatives, a gap identified by participants within group discussions. While this partnership was tailored for a specific HRC patient and public group, the process implemented can be employed for other hereditary cancer groups and could be transferable within other healthcare settings.

13.
Clin Dysmorphol ; 32(1): 7-13, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503917

RESUMEN

The 3MC syndromes types 1-3 (MIM#257920, 265050 and 248340, respectively) are rare autosomal recessive genetic disorders caused by pathogenic variants in genes encoding the lectin complement pathway. Patients with 3MC syndrome have a distinctive facial phenotype including hypertelorism, highly arched eyebrows and ptosis. A significant number of patients have bilateral cleft lip and palate and they often exhibit genitourinary and skeletal anomalies. A clinical clue to 3MC syndrome is the presence of a characteristic caudal appendage. Genetic variants in MASP1, COLEC11 and COLEC10 genes have been identified as the causation of this syndrome, yet relatively few patients have been described so far. We consolidate and expand current knowledge of phenotypic features and molecular diagnosis of 3MC syndrome by describing the clinical and molecular findings in five patients. This includes follow-up of two brothers whose clinical phenotypes were first reported by Crisponi et al in 1999. Our study contributes to the evolving clinical and molecular spectrum of 3MC syndrome.


Asunto(s)
Labio Leporino , Fisura del Paladar , Hipertelorismo , Humanos , Masculino , Fenotipo , Cara , Colectinas
14.
Kidney Int Rep ; 8(7): 1417-1429, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37441484

RESUMEN

Introduction: Urofacial, or Ochoa, syndrome (UFS) is an autosomal recessive disease featuring a dyssynergic bladder with detrusor smooth muscle contracting against an undilated outflow tract. It also features an abnormal grimace. Half of individuals with UFS carry biallelic variants in HPSE2, whereas other rare families carry variants in LRIG2.LRIG2 is immunodetected in pelvic ganglia sending autonomic axons into the bladder. Moreover, Lrig2 mutant mice have abnormal urination and abnormally patterned bladder nerves. We hypothesized that peripheral neurogenic defects underlie LRIG2-associated bladder dysfunction. Methods: We describe a new family with LRIG2-associated UFS and studied Lrig2 homozygous mutant mice with ex vivo physiological analyses. Results: The index case presented antenatally with urinary tract (UT) dilatation, and postnatally had urosepsis and functional bladder outlet obstruction. He had the grimace that, together with UT disease, characterizes UFS. Although HPSE2 sequencing was normal, he carried a homozygous, predicted pathogenic, LRIG2 stop variant (c.1939C>T; p.Arg647∗). Lrig2 mutant mice had enlarged bladders. Ex vivo physiology experiments showed neurogenic smooth muscle relaxation defects in the outflow tract, containing the urethra adjoining the bladder, and in detrusor contractility. Moreover, there were nuanced differences in physiological outflow tract defects between the sexes. Conclusion: Putting this family in the context of all reported UT disease-associated LRIG2 variants, the full UFS phenotype occurs with biallelic stop or frameshift variants, but missense variants lead to bladder-limited disease. Our murine observations support the hypothesis that UFS is a genetic autonomic neuropathy of the bladder affecting outflow tract and bladder body function.

15.
J Pediatr Urol ; 18(3): 362.e1-362.e8, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35491304

RESUMEN

INTRODUCTION: Bladder exstrophy-epispadias complex (BEEC) comprises a spectrum of anterior midline congenital malformations, involving the lower urinary tract. BEEC is usually sporadic, but families with more than one affected member have been reported, and a twin concordance study supported a genetic contribution to pathogenesis. Moreover, diverse chromosomal aberrations have been reported in a small subset of individuals with BEEC. The commonest are 22q11.2 microduplications, identified in approximately 3% of BEEC index cases. OBJECTIVES: We aimed to refine the chromosome 22q11.2 locus, and to determine whether the encompassed genes are expressed in normal developing and mature human urinary bladders. RESULTS: Using DNA from an individual with CBE, the 22q11.2 duplicated locus was refined by identification of a maternally inherited 314 kb duplication (chr22:21,147,293-21,461,017), as depicted in this image. Moreover, the eight protein coding genes within the locus were found to be expressed during normal developing and mature bladders. To determine whether duplications in any of these individual genes were associated with CBE, we undertook copy number analyses in 115 individuals with CBE without duplications of the whole locus. No duplications of individual genes were found. DISCUSSION: The current study has refined the 22q11.2 locus associated with BEEC and has shown that the eight protein coding genes are expressed in human bladders both during antenatal development and postnatally. Nevertheless, the precise biological explanation as to why duplication of the phenocritical region of 22q11 confers increased susceptibility to BEEC remains to be determined. The fact that individuals with CBE without duplications of the whole locus also lacked duplication of any of the individual genes suggests that in individuals with BEEC and duplication of the 22q11.2 locus altered dosage of more than one gene may be important in BEEC etiology. CONCLUSIONS: The study has refined the 22q11.2 locus associated with BEEC and has shown that the eight protein coding genes within this locus are expressed in human bladders.


Asunto(s)
Extrofia de la Vejiga , Epispadias , Extrofia de la Vejiga/genética , Extrofia de la Vejiga/patología , Cromosomas/metabolismo , Epispadias/genética , Epispadias/patología , Femenino , Humanos , Embarazo , Vejiga Urinaria/anomalías
16.
Front Genet ; 13: 896125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812751

RESUMEN

Urofacial (also called Ochoa) syndrome (UFS) is an autosomal recessive congenital disorder of the urinary bladder featuring voiding dysfunction and a grimace upon smiling. Biallelic variants in HPSE2, coding for the secreted protein heparanase-2, are described in around half of families genetically studied. Hpse2 mutant mice have aberrant bladder nerves. We sought to expand the genotypic spectrum of UFS and make insights into its pathobiology. Sanger sequencing, next generation sequencing and microarray analysis were performed in four previously unreported families with urinary tract disease and grimacing. In one, the proband had kidney failure and was homozygous for the previously described pathogenic variant c.429T>A, p.(Tyr143*). Three other families each carried a different novel HPSE2 variant. One had homozygous triplication of exons 8 and 9; another had homozygous deletion of exon 4; and another carried a novel c.419C>G variant encoding the missense p.Pro140Arg in trans with c.1099-1G>A, a previously reported pathogenic splice variant. Expressing the missense heparanase-2 variant in vitro showed that it was secreted as normal, suggesting that 140Arg has aberrant functionality after secretion. Bladder autonomic neurons emanate from pelvic ganglia where resident neural cell bodies derive from migrating neural crest cells. We demonstrated that, in normal human embryos, neuronal precursors near the developing hindgut and lower urinary tract were positive for both heparanase-2 and leucine rich repeats and immunoglobulin like domains 2 (LRIG2). Indeed, biallelic variants of LRIG2 have been implicated in rare UFS families. The study expands the genotypic spectrum in HPSE2 in UFS and supports a developmental neuronal pathobiology.

17.
JAMA Pediatr ; 176(5): 486-492, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35311942

RESUMEN

Importance: Aminoglycosides are commonly prescribed antibiotics used for the treatment of neonatal sepsis. The MT-RNR1 m.1555A>G variant predisposes to profound aminoglycoside-induced ototoxicity (AIO). Current genotyping approaches take several days, which is unfeasible in acute settings. Objective: To develop a rapid point-of-care test (POCT) for the m.1555A>G variant before implementation of this technology in the acute neonatal setting to guide antibiotic prescribing and avoid AIO. Design, Setting, and Participants: This pragmatic prospective implementation trial recruited neonates admitted to 2 large neonatal intensive care units between January 6, 2020, and November 30, 2020, in the UK. Interventions: Neonates were tested for the m.1555A>G variant via the rapid POCT on admission to the neonatal intensive care unit. Main Outcomes and Measures: The primary outcome assessed the proportion of neonates successfully tested for the variant of all infants prescribed antibiotics. Secondary outcomes measured whether implementation was negatively associated with routine clinical practice and the performance of the system. The study was statistically powered to detect a significant difference between time to antibiotic administration before and after implementation of the MT-RNR1 POCT. Results: A total of 751 neonates were recruited and had a median (range) age of 2.5 (0-198) days. The MT-RNR1 POCT was able to genotype the m.1555A>G variant in 26 minutes. Preclinical validation demonstrated a 100% sensitivity (95% CI, 93.9%-100.0%) and specificity (95% CI, 98.5%-100.0%). Three participants with the m.1555A>G variant were identified, all of whom avoided aminoglycoside antibiotics. Overall, 424 infants (80.6%) receiving antibiotics were successfully tested for the variant, and the mean time to antibiotics was equivalent to previous practice. Conclusions and Relevance: The MT-RNR1 POCT was integrated without disrupting normal clinical practice, and genotype was used to guide antibiotic prescription and avoid AIO. This approach identified the m.1555A>G variant in a practice-changing time frame, and wide adoption could significantly reduce the burden of AIO.


Asunto(s)
Aminoglicósidos , Ototoxicidad , Aminoglicósidos/efectos adversos , Antibacterianos/efectos adversos , Genotipo , Humanos , Lactante , Recién Nacido , Cuidado Intensivo Neonatal , Sistemas de Atención de Punto , Estudios Prospectivos
18.
Elife ; 112022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36124557

RESUMEN

Posterior urethral valves (PUV) are the commonest cause of end-stage renal disease in children, but the genetic architecture of this rare disorder remains unknown. We performed a sequencing-based genome-wide association study (seqGWAS) in 132 unrelated male PUV cases and 23,727 controls of diverse ancestry, identifying statistically significant associations with common variants at 12q24.21 (p=7.8 × 10-12; OR 0.4) and rare variants at 6p21.1 (p=2.0 × 10-8; OR 7.2), that were replicated in an independent European cohort of 395 cases and 4151 controls. Fine mapping and functional genomic data mapped these loci to the transcription factor TBX5 and planar cell polarity gene PTK7, respectively, the encoded proteins of which were detected in the developing urinary tract of human embryos. We also observed enrichment of rare structural variation intersecting with candidate cis-regulatory elements, particularly inversions predicted to affect chromatin looping (p=3.1 × 10-5). These findings represent the first robust genetic associations of PUV, providing novel insights into the underlying biology of this poorly understood disorder and demonstrate how a diverse ancestry seqGWAS can be used for disease locus discovery in a rare disease.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteínas de Dominio T Box/genética , Sistema Urinario , Moléculas de Adhesión Celular/genética , Niño , Cromatina , Humanos , Masculino , Proteínas Tirosina Quinasas Receptoras/genética , Factores de Transcripción/genética
19.
Commun Biol ; 5(1): 1203, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352089

RESUMEN

Classic bladder exstrophy represents the most severe end of all human congenital anomalies of the kidney and urinary tract and is associated with bladder cancer susceptibility. Previous genetic studies identified one locus to be involved in classic bladder exstrophy, but were limited to a restrict number of cohort. Here we show the largest classic bladder exstrophy genome-wide association analysis to date where we identify eight genome-wide significant loci, seven of which are novel. In these regions reside ten coding and four non-coding genes. Among the coding genes is EFNA1, strongly expressed in mouse embryonic genital tubercle, urethra, and primitive bladder. Re-sequence of EFNA1 in the investigated classic bladder exstrophy cohort of our study displays an enrichment of rare protein altering variants. We show that all coding genes are expressed and/or significantly regulated in both mouse and human embryonic developmental bladder stages. Furthermore, nine of the coding genes residing in the regions of genome-wide significance are differentially expressed in bladder cancers. Our data suggest genetic drivers for classic bladder exstrophy, as well as a possible role for these drivers to relevant bladder cancer susceptibility.


Asunto(s)
Extrofia de la Vejiga , Neoplasias de la Vejiga Urinaria , Humanos , Animales , Ratones , Extrofia de la Vejiga/genética , Extrofia de la Vejiga/complicaciones , Estudio de Asociación del Genoma Completo , Neoplasias de la Vejiga Urinaria/genética , Transcriptoma , Efrina-A1/genética
20.
Genes (Basel) ; 12(8)2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34440323

RESUMEN

The bladder exstrophy-epispadias complex (BEEC) is an abdominal midline malformation comprising a spectrum of congenital genitourinary abnormalities of the abdominal wall, pelvis, urinary tract, genitalia, anus, and spine. The vast majority of BEEC cases are classified as non-syndromic and the etiology of this malformation is still unknown. This review presents the current knowledge on this multifactorial disorder, including phenotypic and anatomical characterization, epidemiology, proposed developmental mechanisms, existing animal models, and implicated genetic and environmental components.


Asunto(s)
Extrofia de la Vejiga/genética , Epispadias/genética , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA