Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 93(4): 805-818, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36571386

RESUMEN

OBJECTIVE: We examined medical records to determine health conditions associated with dementia at varied intervals prior to dementia diagnosis in participants from the Baltimore Longitudinal Study of Aging (BLSA). METHODS: Data were available for 347 Alzheimer's disease (AD), 76 vascular dementia (VaD), and 811 control participants without dementia. Logistic regressions were performed associating International Classification of Diseases, 9th Revision (ICD-9) health codes with dementia status across all time points, at 5 and 1 year(s) prior to dementia diagnosis, and at the year of diagnosis, controlling for age, sex, and follow-up length of the medical record. RESULTS: In AD, the earliest and most consistent associations across all time points included depression, erectile dysfunction, gait abnormalities, hearing loss, and nervous and musculoskeletal symptoms. Cardiomegaly, urinary incontinence, non-epithelial skin cancer, and pneumonia were not significant until 1 year before dementia diagnosis. In VaD, the earliest and most consistent associations across all time points included abnormal electrocardiogram (EKG), cardiac dysrhythmias, cerebrovascular disease, non-epithelial skin cancer, depression, and hearing loss. Atrial fibrillation, occlusion of cerebral arteries, essential tremor, and abnormal reflexes were not significant until 1 year before dementia diagnosis. INTERPRETATION: These findings suggest that some health conditions are associated with future dementia beginning at least 5 years before dementia diagnosis and are consistently seen over time, while others only reach significance closer to the date of diagnosis. These results also show that there are both shared and distinctive health conditions associated with AD and VaD. These results reinforce the need for medical intervention and treatment to lessen the impact of health comorbidities in the aging population. ANN NEUROL 2023;93:805-818.


Asunto(s)
Enfermedad de Alzheimer , Trastornos Cerebrovasculares , Demencia Vascular , Masculino , Humanos , Anciano , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/diagnóstico , Demencia Vascular/complicaciones , Demencia Vascular/epidemiología , Estudios Longitudinales , Trastornos Cerebrovasculares/epidemiología , Comorbilidad
2.
Neuroimage ; 278: 120277, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37473978

RESUMEN

The effects of normal aging on functional connectivity (FC) within various brain networks of gray matter (GM) have been well-documented. However, the age effects on the networks of FC between white matter (WM) and GM, namely WM-GM FC, remains unclear. Evaluating crucial properties, such as global efficiency (GE), for a WM-GM FC network poses a challenge due to the absence of closed triangle paths which are essential for assessing network properties in traditional graph models. In this study, we propose a bipartite graph model to characterize the WM-GM FC network and quantify these challenging network properties. Leveraging this model, we assessed the WM-GM FC network properties at multiple scales across 1,462 cognitively normal subjects aged 22-96 years from three repositories (ADNI, BLSA and OASIS-3) and investigated the age effects on these properties throughout adulthood and during late adulthood (age ≥70 years). Our findings reveal that (1) heterogeneous alterations occurred in region-specific WM-GM FC over the adulthood and decline predominated during late adulthood; (2) the FC density of WM bundles engaged in memory, executive function and processing speed declined with age over adulthood, particularly in later years; and (3) the GE of attention, default, somatomotor, frontoparietal and limbic networks reduced with age over adulthood, and GE of visual network declined during late adulthood. These findings provide unpresented insights into multi-scale alterations in networks of WM-GM functional synchronizations during normal aging. Furthermore, our bipartite graph model offers an extendable framework for quantifying WM-engaged networks, which may contribute to a wide range of neuroscience research.


Asunto(s)
Sustancia Gris , Sustancia Blanca , Humanos , Adulto , Sustancia Gris/diagnóstico por imagen , Imagen por Resonancia Magnética , Envejecimiento , Encéfalo , Sustancia Blanca/diagnóstico por imagen
3.
Neuroimage ; 256: 119198, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35421567

RESUMEN

Community detection on graphs constructed from functional magnetic resonance imaging (fMRI) data has led to important insights into brain functional organization. Large studies of brain community structure often include images acquired on multiple scanners across different studies. Differences in scanner can introduce variability into the downstream results, and these differences are often referred to as scanner effects. Such effects have been previously shown to significantly impact common network metrics. In this study, we identify scanner effects in data-driven community detection results and related network metrics. We assess a commonly employed harmonization method and propose new methodology for harmonizing functional connectivity that leverage existing knowledge about network structure as well as patterns of covariance in the data. Finally, we demonstrate that our new methods reduce scanner effects in community structure and network metrics. Our results highlight scanner effects in studies of brain functional organization and provide additional tools to address these unwanted effects. These findings and methods can be incorporated into future functional connectivity studies, potentially preventing spurious findings and improving reliability of results.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Benchmarking , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados
4.
Magn Reson Med ; 86(1): 456-470, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33533094

RESUMEN

PURPOSE: Diffusion weighted MRI imaging (DWI) is often subject to low signal-to-noise ratios (SNRs) and artifacts. Recent work has produced software tools that can correct individual problems, but these tools have not been combined with each other and with quality assurance (QA). A single integrated pipeline is proposed to perform DWI preprocessing with a spectrum of tools and produce an intuitive QA document. METHODS: The proposed pipeline, built around the FSL, MRTrix3, and ANTs software packages, performs DWI denoising; inter-scan intensity normalization; susceptibility-, eddy current-, and motion-induced artifact correction; and slice-wise signal drop-out imputation. To perform QA on the raw and preprocessed data and each preprocessing operation, the pipeline documents qualitative visualizations, quantitative plots, gradient verifications, and tensor goodness-of-fit and fractional anisotropy analyses. RESULTS: Raw DWI data were preprocessed and quality checked with the proposed pipeline and demonstrated improved SNRs; physiologic intensity ratios; corrected susceptibility-, eddy current-, and motion-induced artifacts; imputed signal-lost slices; and improved tensor fits. The pipeline identified incorrect gradient configurations and file-type conversion errors and was shown to be effective on externally available datasets. CONCLUSIONS: The proposed pipeline is a single integrated pipeline that combines established diffusion preprocessing tools from major MRI-focused software packages with intuitive QA.


Asunto(s)
Artefactos , Imagen de Difusión por Resonancia Magnética , Anisotropía , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Movimiento (Física)
5.
Neuroimage ; 221: 117182, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32702483

RESUMEN

Studies suggest that concussions may be related to increased risk of neurodegenerative diseases, such as Chronic Traumatic Encephalopathy and Alzheimer's Disease. Most neuroimaging studies show effects of concussions in frontal and temporal lobes of the brain, yet the long-term impacts of concussions on the aging brain have not been well studied. We examined neuroimaging data from 51 participants (mean age at first imaging visit=65.1 ± 11.23) in the Baltimore Longitudinal Study of Aging (BLSA) who reported a concussion in their medical history an average of 23 years prior to the first imaging visit, and compared them to 150 participants (mean age at first imaging visit=66.6 ± 10.97) with no history of concussion. Participants underwent serial structural MRI over a mean of 5.17±6.14 years and DTI over a mean of 2.92±2.22 years to measure brain structure, as well as 15O-water PET over a mean of 5.33±2.19 years to measure brain function. A battery of neuropsychological tests was also administered over a mean of 11.62±7.41 years. Analyses of frontal and temporal lobe regions were performed to examine differences in these measures between the concussion and control groups at first imaging visit and in change over time. Compared to those without concussion, participants with a prior concussion had greater brain atrophy in temporal lobe white matter and hippocampus at first imaging visit, which remained stable throughout the follow-up visits. Those with prior concussion also showed differences in white matter microstructure using DTI, including increased radial and axial diffusivity in the fornix/stria terminalis, anterior corona radiata, and superior longitudinal fasciculus at first imaging visit. In 15O-water PET, higher resting cerebral blood flow was seen at first imaging visit in orbitofrontal and lateral temporal regions, and both increases and decreases were seen in prefrontal, cingulate, insular, hippocampal, and ventral temporal regions with longitudinal follow-up. There were no significant differences in neuropsychological performance between groups. Most of the differences observed between the concussed and non-concussed groups were seen at the first imaging visit, suggesting that concussions can produce long-lasting structural and functional alterations in temporal and frontal regions of the brain in older individuals. These results also suggest that many of the reported short-term effects of concussion may still be apparent later in life.


Asunto(s)
Envejecimiento , Conmoción Encefálica , Corteza Cerebral , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Sustancia Blanca , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Envejecimiento/fisiología , Baltimore , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/patología , Conmoción Encefálica/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Imagen de Difusión Tensora , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología
6.
Neuroimage ; 223: 117289, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32835822

RESUMEN

Investigation of relationships between age-related changes in regional brain volumes and changes in domain-specific cognition could provide insights into the neural underpinnings of individual differences in cognitive aging. Domain-specific cognition (memory, verbal fluency, visuospatial ability) and tests of executive function and attention (Trail-Making Test Part A and B) and 47 brain volumes of interest (VOIs) were assessed in 836 Baltimore Longitudinal Study of Aging participants with mean follow-up of 4.1 years (maximum 23.1 years). To examine the correlation between changes in domain-specific cognition and changes in brain volumes, we used bivariate linear mixed effects models with unstructured variance-covariance structure to estimate longitudinal trajectories for each variable of interest and correlations among the random effects of these measures. Higher annual rates of memory decline were associated with greater volume loss in 14 VOIs primarily within the temporal and occipital lobes. Verbal fluency decline was associated with greater ventricular enlargement and volume loss in 24 VOIs within the frontal, temporal, and parietal lobes. Decline in visuospatial ability was associated with volume loss in 3 temporal and parietal VOIs. Declines on the attentional test were associated with volume loss in 4 VOIs located within temporal and parietal lobes. Greater declines on the executive function test were associated with greater ventricular enlargement and volume loss in 10 frontal, parietal, and temporal VOIs. Our findings highlight domain-specific patterns of regional brain atrophy that may contribute to individual differences in cognitive aging.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Encéfalo/anatomía & histología , Envejecimiento Cognitivo/fisiología , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tamaño de los Órganos
7.
J Neurosci ; 33(46): 18008-14, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24227712

RESUMEN

To develop targeted intervention strategies for the treatment of Alzheimer's disease, we first need to identify early markers of brain changes that occur before the onset of cognitive impairment. Here, we examine changes in resting-state brain function in humans from the Baltimore Longitudinal Study of Aging. We compared longitudinal changes in regional cerebral blood flow (rCBF), assessed by (15)O-water PET, over a mean 7 year period between participants who eventually developed cognitive impairment (n = 22) and those who remained cognitively normal (n = 99). Annual PET assessments began an average of 11 years before the onset of cognitive impairment in the subsequently impaired group, so all participants were cognitively normal during the scanning interval. A voxel-based mixed model analysis was used to compare groups with and without subsequent impairment. Participants with subsequent impairment showed significantly greater longitudinal rCBF increases in orbitofrontal, medial frontal, and anterior cingulate regions, and greater longitudinal decreases in parietal, temporal, and thalamic regions compared with those who maintained cognitive health. These changes were linear in nature and were not influenced by longitudinal changes in regional tissue volume. Although all participants were cognitively normal during the scanning interval, most of the accelerated rCBF changes seen in the subsequently impaired group occurred within regions thought to be critical for the maintenance of cognitive function. These changes also occurred within regions that show early accumulation of pathology in Alzheimer's disease, suggesting that there may be a connection between early pathologic change and early changes in brain function.


Asunto(s)
Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Trastornos del Conocimiento/diagnóstico por imagen , Progresión de la Enfermedad , Anciano , Anciano de 80 o más Años , Envejecimiento/psicología , Encéfalo/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Trastornos del Conocimiento/psicología , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Factores de Tiempo
8.
Magn Reson Imaging ; 111: 113-119, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38537892

RESUMEN

Data harmonization is necessary for removing confounding effects in multi-site diffusion image analysis. One such harmonization method, LinearRISH, scales rotationally invariant spherical harmonic (RISH) features from one site ("target") to the second ("reference") to reduce confounding scanner effects. However, reference and target site designations are not arbitrary and resultant diffusion metrics (fractional anisotropy, mean diffusivity) are biased by this choice. In this work we propose MidRISH: rather than scaling reference RISH features to target RISH features, we project both sites to a mid-space. We validate MidRISH with the following experiments: harmonizing scanner differences from 37 matched patients free of cognitive impairment, and harmonizing acquisition and study differences on 117 matched patients free of cognitive impairment. We find that MidRISH reduces bias of reference selection while preserving harmonization efficacy of LinearRISH. Users should be cautious when performing LinearRISH harmonization. To select a reference site is to choose diffusion metric effect-size. Our proposed method eliminates the bias-inducing site selection step.


Asunto(s)
Algoritmos , Humanos , Femenino , Masculino , Procesamiento de Imagen Asistido por Computador/métodos , Reproducibilidad de los Resultados , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Anisotropía , Anciano , Persona de Mediana Edad , Imagen de Difusión Tensora/métodos , Disfunción Cognitiva/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos
9.
Neuroinformatics ; 22(2): 193-205, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38526701

RESUMEN

T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correction to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network "DeepN4" on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and models are released at https://github.com/MASILab/DeepN4 .


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Redes Neurales de la Computación , Sesgo
10.
J Med Imaging (Bellingham) ; 11(2): 024011, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38655188

RESUMEN

Purpose: Diffusion tensor imaging (DTI) is a magnetic resonance imaging technique that provides unique information about white matter microstructure in the brain but is susceptible to confounding effects introduced by scanner or acquisition differences. ComBat is a leading approach for addressing these site biases. However, despite its frequent use for harmonization, ComBat's robustness toward site dissimilarities and overall cohort size have not yet been evaluated in terms of DTI. Approach: As a baseline, we match N=358 participants from two sites to create a "silver standard" that simulates a cohort for multi-site harmonization. Across sites, we harmonize mean fractional anisotropy and mean diffusivity, calculated using participant DTI data, for the regions of interest defined by the JHU EVE-Type III atlas. We bootstrap 10 iterations at 19 levels of total sample size, 10 levels of sample size imbalance between sites, and 6 levels of mean age difference between sites to quantify (i) ßAGE, the linear regression coefficient of the relationship between FA and age; (ii) Î³/f*, the ComBat-estimated site-shift; and (iii) Î´/f*, the ComBat-estimated site-scaling. We characterize the reliability of ComBat by evaluating the root mean squared error in these three metrics and examine if there is a correlation between the reliability of ComBat and a violation of assumptions. Results: ComBat remains well behaved for ßAGE when N>162 and when the mean age difference is less than 4 years. The assumptions of the ComBat model regarding the normality of residual distributions are not violated as the model becomes unstable. Conclusion: Prior to harmonization of DTI data with ComBat, the input cohort should be examined for size and covariate distributions of each site. Direct assessment of residual distributions is less informative on stability than bootstrap analysis. We caution use ComBat of in situations that do not conform to the above thresholds.

11.
ArXiv ; 2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-37986731

RESUMEN

Imaging findings inconsistent with those expected at specific chronological age ranges may serve as early indicators of neurological disorders and increased mortality risk. Estimation of chronological age, and deviations from expected results, from structural magnetic resonance imaging (MRI) data has become an important proxy task for developing biomarkers that are sensitive to such deviations. Complementary to structural analysis, diffusion tensor imaging (DTI) has proven effective in identifying age-related microstructural changes within the brain white matter, thereby presenting itself as a promising additional modality for brain age prediction. Although early studies have sought to harness DTI's advantages for age estimation, there is no evidence that the success of this prediction is owed to the unique microstructural and diffusivity features that DTI provides, rather than the macrostructural features that are also available in DTI data. Therefore, we seek to develop white-matter-specific age estimation to capture deviations from normal white matter aging. Specifically, we deliberately disregard the macrostructural information when predicting age from DTI scalar images, using two distinct methods. The first method relies on extracting only microstructural features from regions of interest (ROIs). The second applies 3D residual neural networks (ResNets) to learn features directly from the images, which are non-linearly registered and warped to a template to minimize macrostructural variations. When tested on unseen data, the first method yields mean absolute error (MAE) of 6.11 ± 0.19 years for cognitively normal participants and MAE of 6.62 ± 0.30 years for cognitively impaired participants, while the second method achieves MAE of 4.69 ± 0.23 years for cognitively normal participants and MAE of 4.96 ± 0.28 years for cognitively impaired participants. We find that the ResNet model captures subtler, non-macrostructural features for brain age prediction.

12.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915636

RESUMEN

INTRODUCTION: The effects of sex, race, and Apolipoprotein E (APOE) - Alzheimer's disease (AD) risk factors - on white matter integrity are not well characterized. METHODS: Diffusion MRI data from nine well-established longitudinal cohorts of aging were free-water (FW)-corrected and harmonized. This dataset included 4,702 participants (age=73.06 ± 9.75) with 9,671 imaging sessions over time. FW and FW-corrected fractional anisotropy (FAFWcorr) were used to assess differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. RESULTS: Sex differences in FAFWcorr in association and projection tracts, racial differences in FAFWcorr in projection tracts, and APOE-ε4 differences in FW limbic and occipital transcallosal tracts were most pronounced. DISCUSSION: There are prominent differences in white matter microstructure by sex, race, and APOE-ε4 carrier status. This work adds to our understanding of disparities in AD. Additional work to understand the etiology of these differences is warranted.

13.
Neuroimage ; 69: 43-50, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23266746

RESUMEN

Longitudinal studies on aging brain function have shown declines in frontal activity as opposed to the over-recruitment shown in cross-sectional studies. Such mixed findings suggest that age-related changes in frontal activity may be process- and region-specific, having varied associations across different frontal regions involved in distinct cognitive processes, rather than generalized across the frontal cortex. Using data from the Baltimore Longitudinal Study of Aging (BLSA), we examined individual differences through cross-sectional associations at baseline evaluation and longitudinal changes in regional cerebral blood flow (rCBF) in relation to different executive abilities in cognitively normal older adults. We found that, at baseline, greater rCBF in middle frontal regions correlated with better performance in abstraction and chunking, but greater rCBF in the insula and a distinct middle frontal region correlated with poorer inhibition and discrimination, respectively. In addition, increases in frontal rCBF over time were associated with longitudinal declines in abstraction, chunking, inhibition, discrimination, switching, and manipulation. These findings indicate process- and region-specific, rather than uniform, age-related changes in frontal brain-behavior associations, and also suggest that longitudinally high-levels of frontal engagement reflect declining rather than stable cognition.


Asunto(s)
Envejecimiento/fisiología , Circulación Cerebrovascular/fisiología , Función Ejecutiva/fisiología , Lóbulo Frontal/fisiología , Anciano , Estudios Transversales , Femenino , Lóbulo Frontal/irrigación sanguínea , Lóbulo Frontal/diagnóstico por imagen , Humanos , Estudios Longitudinales , Masculino , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones
14.
Memory ; 21(2): 249-60, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22989194

RESUMEN

Events have clear and consistent boundaries that are defined during perception in a manner that influences memory performance. The natural process of event segmentation shapes event definitions during perception, and appears to play a critical role in defining distinct episodic memories at encoding. However, the role of retrieval processes in modifying event definitions is not clear. We explored how such processes changed event boundary definitions at recall. In Experiment 1 we showed that distance from encoding is related to boundary flexibility. Participants were more likely to move self-reported event boundaries to include information reported beyond those boundaries when recalling more distant events compared to more recent events. In Experiment 2 we showed that age also influenced boundary flexibility. Older Age adults were more likely to move event boundaries than College Age adults, and the relationship between distance from encoding and boundary flexibility seen in Experiment 1 was present only in College Age and Middle Age adults. These results suggest that factors at retrieval have a direct impact on event definitions in memory and that, although episodic memories may be initially defined at encoding, these definitions are not necessarily maintained in long-term memory.


Asunto(s)
Memoria Episódica , Recuerdo Mental/fisiología , Adolescente , Adulto , Anciano , Envejecimiento/fisiología , Envejecimiento/psicología , Femenino , Humanos , Masculino , Memoria a Largo Plazo , Persona de Mediana Edad , Factores de Tiempo
15.
Artículo en Inglés | MEDLINE | ID: mdl-37465095

RESUMEN

Batch size is a key hyperparameter in training deep learning models. Conventional wisdom suggests larger batches produce improved model performance. Here we present evidence to the contrary, particularly when using autoencoders to derive meaningful latent spaces from data with spatially global similarities and local differences, such as electronic health records (EHR) and medical imaging. We investigate batch size effects in both EHR data from the Baltimore Longitudinal Study of Aging and medical imaging data from the multimodal brain tumor segmentation (BraTS) challenge. We train fully connected and convolutional autoencoders to compress the EHR and imaging input spaces, respectively, into 32-dimensional latent spaces via reconstruction losses for various batch sizes between 1 and 100. Under the same hyperparameter configurations, smaller batches improve loss performance for both datasets. Additionally, latent spaces derived by autoencoders with smaller batches capture more biologically meaningful information. Qualitatively, we visualize 2-dimensional projections of the latent spaces and find that with smaller batches the EHR network better separates the sex of the individuals, and the imaging network better captures the right-left laterality of tumors. Quantitatively, the analogous sex classification and laterality regressions using the latent spaces demonstrate statistically significant improvements in performance at smaller batch sizes. Finally, we find improved individual variation locally in visualizations of representative data reconstructions at lower batch sizes. Taken together, these results suggest that smaller batch sizes should be considered when designing autoencoders to extract meaningful latent spaces among EHR and medical imaging data driven by global similarities and local variation.

16.
bioRxiv ; 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37645973

RESUMEN

Objective: Data harmonization is necessary for removing confounding effects in multi-site diffusion image analysis. One such harmonization method, LinearRISH, scales rotationally invariant spherical harmonic (RISH) features from one site ("target") to the second ("reference") to reduce confounding scanner effects. However, reference and target site designations are not arbitrary and resultant diffusion metrics (fractional anisotropy, mean diffusivity) are biased by this choice. In this work we propose MidRISH: rather than scaling reference RISH features to target RISH features, we project both sites to a mid-space. Methods: We validate MidRISH with the following experiments: harmonizing scanner differences from 37 matched patients free of cognitive impairment, and harmonizing acquisition and study differences on 117 matched patients free of cognitive impairment. Conclusion: MidRISH reduces bias of reference selection while preserving harmonization efficacy of LinearRISH. Significance: Users should be cautious when performing LinearRISH harmonization. To select a reference site is to choose diffusion metric effect-size. Our proposed method eliminates the bias-inducing site selection step.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37600506

RESUMEN

Recently, increasing evidence suggests that fMRI signals in white matter (WM), conventionally ignored as nuisance, are robustly detectable using appropriate processing methods and are related to neural activity, while changes in WM with aging and degeneration are also well documented. These findings suggest variations in patterns of BOLD signals in WM should be investigated. However, existing fMRI analysis tools, which were designed for processing gray matter signals, are not well suited for large-scale processing of WM signals in fMRI data. We developed an automatic pipeline for high-performance preprocessing of fMRI images with emphasis on quantifying changes in BOLD signals in WM in an aging population. At the image processing level, the pipeline integrated existing software modules with fine parameter tunings and modifications to better extract weaker WM signals. The preprocessing results primarily included whole-brain time-courses, functional connectivity, maps and tissue masks in a common space. At the job execution level, this pipeline exploited a local XNAT to store datasets and results, while using DAX tool to automatic distribute batch jobs that run on high-performance computing clusters. Through the pipeline, 5,034 fMRI/T1 scans were preprocessed. The intraclass correlation coefficient (ICC) of test-retest experiment based on the preprocessed data is 0.52 - 0.86 (N=1000), indicating a high reliability of our pipeline, comparable to previously reported ICC in gray matter experiments. This preprocessing pipeline highly facilitates our future analyses on WM functional alterations in aging and may be of benefit to a larger community interested in WM fMRI studies.

18.
Alzheimers Dement (Amst) ; 15(4): e12468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37780863

RESUMEN

Introduction: It is unclear how rates of white matter microstructural decline differ between normal aging and abnormal aging. Methods: Diffusion MRI data from several well-established longitudinal cohorts of aging (Alzheimer's Disease Neuroimaging Initiative [ADNI], Baltimore Longitudinal Study of Aging [BLSA], Vanderbilt Memory & Aging Project [VMAP]) were free-water corrected and harmonized. This dataset included 1723 participants (age at baseline: 72.8 ± 8.87 years, 49.5% male) and 4605 imaging sessions (follow-up time: 2.97 ± 2.09 years, follow-up range: 1-13 years, mean number of visits: 4.42 ± 1.98). Differences in white matter microstructural decline in normal and abnormal agers was assessed. Results: While we found a global decline in white matter in normal/abnormal aging, we found that several white matter tracts (e.g., cingulum bundle) were vulnerable to abnormal aging. Conclusions: There is a prevalent role of white matter microstructural decline in aging, and future large-scale studies in this area may further refine our understanding of the underlying neurodegenerative processes. HIGHLIGHTS: Longitudinal data were free-water corrected and harmonized.Global effects of white matter decline were seen in normal and abnormal aging.The free-water metric was most vulnerable to abnormal aging.Cingulum free-water was the most vulnerable to abnormal aging.

19.
Res Sq ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014176

RESUMEN

T1-weighted (T1w) MRI has low frequency intensity artifacts due to magnetic field inhomogeneities. Removal of these biases in T1w MRI images is a critical preprocessing step to ensure spatially consistent image interpretation. N4ITK bias field correction, the current state-of-the-art, is implemented in such a way that makes it difficult to port between different pipelines and workflows, thus making it hard to reimplement and reproduce results across local, cloud, and edge platforms. Moreover, N4ITK is opaque to optimization before and after its application, meaning that methodological development must work around the inhomogeneity correction step. Given the importance of bias fields correction in structural preprocessing and flexible implementation, we pursue a deep learning approximation / reinterpretation of the N4ITK bias fields correction to create a method which is portable, flexible, and fully differentiable. In this paper, we trained a deep learning network "DeepN4" on eight independent cohorts from 72 different scanners and age ranges with N4ITK-corrected T1w MRI and bias field for supervision in log space. We found that we can closely approximate N4ITK bias fields correction with naïve networks. We evaluate the peak signal to noise ratio (PSNR) in test dataset against the N4ITK corrected images. The median PSNR of corrected images between N4ITK and DeepN4 was 47.96 dB. In addition, we assess the DeepN4 model on eight additional external datasets and show the generalizability of the approach. This study establishes that incompatible N4ITK preprocessing steps can be closely approximated by naïve deep neural networks, facilitating more flexibility. All code and models are released at https://github.com/MASILab/DeepN4.

20.
Alzheimers Dement (Amst) ; 15(2): e12425, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37213219

RESUMEN

Introduction: White matter microstructure may be abnormal along the Alzheimer's disease (AD) continuum. Methods: Diffusion magnetic resonance imaging (dMRI) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI, n = 627), Baltimore Longitudinal Study of Aging (BLSA, n = 684), and Vanderbilt Memory & Aging Project (VMAP, n = 296) cohorts were free-water (FW) corrected and conventional, and FW-corrected microstructural metrics were quantified within 48 white matter tracts. Microstructural values were subsequently harmonized using the Longitudinal ComBat technique and inputted as independent variables to predict diagnosis (cognitively unimpaired [CU], mild cognitive impairment [MCI], AD). Models were adjusted for age, sex, race/ethnicity, education, apolipoprotein E (APOE) ε4 carrier status, and APOE ε2 carrier status. Results: Conventional dMRI metrics were associated globally with diagnostic status; following FW correction, the FW metric itself exhibited global associations with diagnostic status, but intracellular metric associations were diminished. Discussion: White matter microstructure is altered along the AD continuum. FW correction may provide further understanding of the white matter neurodegenerative process in AD. Highlights: Longitudinal ComBat successfully harmonized large-scale diffusion magnetic resonance imaging (dMRI) metrics.Conventional dMRI metrics were globally sensitive to diagnostic status.Free-water (FW) correction mitigated intracellular associations with diagnostic status.The FW metric itself was globally sensitive to diagnostic status. Multivariate conventional and FW-corrected models may provide complementary information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA