Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744530

RESUMEN

Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMs without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus coeruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.Significance Statement Rapid eye movement sleep (REMS) is involved in the processes of memory consolidation and emotional regulation, but drugs selectively enhancing REMS are scant. Herein, we show that the first-in-class selective melatonin MT1 receptor agonist UCM871, by inhibiting the activity of norepinephrine neurons in the locus coeruleus, an important nucleus regulating the sleep/wake cycle, selectively increases the duration of REMS. These findings enhance our current understanding of the neurobiology and pharmacology of REMS and provide a possible novel mechanism and target for disorders associated with REMS dysfunctions.

2.
EMBO J ; 39(21): e103864, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-32893934

RESUMEN

The fragile X autosomal homolog 1 (Fxr1) is regulated by lithium and has been GWAS-associated with schizophrenia and insomnia. Homeostatic regulation of synaptic strength is essential for the maintenance of brain functions and involves both cell-autonomous and system-level processes such as sleep. We examined the contribution of Fxr1 to cell-autonomous homeostatic synaptic scaling and neuronal responses to sleep loss, using a combination of gene overexpression and Crispr/Cas9-mediated somatic knockouts to modulate gene expression. Our findings indicate that Fxr1 is downregulated during both scaling and sleep deprivation via a glycogen synthase kinase 3 beta (GSK3ß)-dependent mechanism. In both conditions, downregulation of Fxr1 is essential for the homeostatic modulation of surface AMPA receptors and synaptic strength. Preventing the downregulation of Fxr1 during sleep deprivation results in altered EEG signatures. Furthermore, sequencing of neuronal translatomes revealed the contribution of Fxr1 to changes induced by sleep deprivation. These findings uncover a role of Fxr1 as a shared signaling hub between cell-autonomous homeostatic plasticity and system-level responses to sleep loss, with potential implications for neuropsychiatric illnesses and treatments.


Asunto(s)
Homeostasis/fisiología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Sueño/genética , Sueño/fisiología , Animales , Encéfalo/fisiología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal , Neuronas/metabolismo , Receptores AMPA/metabolismo , Transcriptoma
3.
Hippocampus ; 33(10): 1075-1093, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37421207

RESUMEN

We investigated the mechanisms underlying the effects of the antidepressant fluoxetine on behavior and adult hippocampal neurogenesis (AHN). After confirming our earlier report that the signaling molecule ß-arrestin-2 (ß-Arr2) is required for the antidepressant-like effects of fluoxetine, we found that the effects of fluoxetine on proliferation of neural progenitors and survival of adult-born granule cells are absent in the ß-Arr2 knockout (KO) mice. To our surprise, fluoxetine induced a dramatic upregulation of the number of doublecortin (DCX)-expressing cells in the ß-Arr2 KO mice, indicating that this marker can be increased even though AHN is not. We discovered two other conditions where a complex relationship occurs between the number of DCX-expressing cells compared to levels of AHN: a chronic antidepressant model where DCX is upregulated and an inflammation model where DCX is downregulated. We concluded that assessing the number of DCX-expressing cells alone to quantify levels of AHN can be complex and that caution should be applied when label retention techniques are unavailable.


Asunto(s)
Proteína Doblecortina , Fluoxetina , Animales , Ratones , Antidepresivos/farmacología , Fluoxetina/farmacología , Hipocampo/fisiología , Neurogénesis/fisiología , Neuronas
4.
Pharmacol Rev ; 71(3): 383-412, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31243157

RESUMEN

5-HT3 receptor antagonists, first introduced to the market in the mid-1980s, are proven efficient agents to counteract chemotherapy-induced emesis. Nonetheless, recent investigations have shed light on unappreciated dimensions of this class of compounds in conditions with an immunoinflammatory component as well as in neurologic and psychiatric disorders. The promising findings from multiple studies have unveiled several beneficial effects of these compounds in multiple sclerosis, stroke, Alzheimer disease, and Parkinson disease. Reports continue to uncover important roles for 5-HT3 receptors in the physiopathology of neuropsychiatric disorders, including depression, anxiety, drug abuse, and schizophrenia. This review addresses the potential of 5-HT3 receptor antagonists in neurology- and neuropsychiatry-related disorders. The broad therapeutic window and high compliance observed with these agents position them as suitable prototypes for the development of novel pharmacotherapeutics with higher efficacy and fewer adverse effects.


Asunto(s)
Trastornos Mentales/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Antagonistas del Receptor de Serotonina 5-HT3/uso terapéutico , Animales , Humanos , Trastornos Mentales/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Receptores de Serotonina 5-HT3/metabolismo
5.
Cereb Cortex ; 29(9): 3813-3827, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30295716

RESUMEN

Cortical D2 dopamine receptor (Drd2) have mostly been examined in the context of cognitive function regulation and neurotransmission modulation of medial prefrontal cortex by principal neurons and parvalbumin positive, fast-spiking, interneurons in schizophrenia. Early studies suggested the presence of D2 receptors in several cortical areas, albeit with major technical limitations. We used combinations of transgenic reporter systems, recombinase activated viral vectors, quantitative translatome analysis, and high sensitivity in situ hybridization to identify D2 receptor expressing cells and establish a map of their respective projections. Our results identified previously uncharacterized clusters of D2 expressing neurons in limbic and sensory regions of the adult mouse brain cortex. Characterization of these clusters by translatome analysis and cell type specific labeling revealed highly heterogeneous expression of D2 receptors in principal neurons and various populations of interneurons across cortical areas. Transcript enrichment analysis also demonstrated variable levels of D2 receptor expression and several orphan G-protein-coupled receptors coexpression in different neuronal clusters, thus suggesting strategies for genetic and therapeutic targeting of D2 expressing neurons in specific cortical areas. These results pave the way for a thorough re-examination of cortical D2 receptor functions, which could provide information about neuronal circuits involved in psychotic and mood disorders.


Asunto(s)
Encéfalo/metabolismo , Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Ratones Transgénicos , Vías Nerviosas/metabolismo , ARN Mensajero/metabolismo
6.
Pharmacol Res ; 139: 440-445, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30528973

RESUMEN

The dopamine D2 receptor (DRD2) remains the principal target of antipsychotic drugs used for the management of schizophrenia and other psychotic disorders. This receptor is highly expressed within the basal ganglia, more specifically the striatal caudate nucleus and the nucleus accumbens. The general functions, signaling and behavioral contributions of striatal DRD2 are well understood. However, the study of cortical DRD2 expression and functions has for the most part been restricted to a subset of pyramidal neurons and interneurons (e.g. parvalbumine positive) of the pre frontal cortex where DRD2 regulated local circuits are believed to contribute to the regulation of emotional and cognitive functions. The further investigations of cortical DRD2 functions have been hindered by relatively low receptor expression and the sensitivity of detection methods. Here we report recent findings by our group using high sensitivity approaches to map cortical DRD2 expression. Results from these investigations revealed different scales of heterogeneity within DRD2 expressing neurons. These variations affected the types of neurons expressing DRD2 as well as the co-expression of DRD2 with other receptors across several cortical regions. Furthermore several cortical regions showing higher clusters of DRD2 expressing neurons are involved in the regulation of emotional, cognitive and sensory functions that can be involved in the expression of psychotic symptoms. These findings underscore the need for a reexamination of cortical DRD2 mediated synaptic plasticity in the context of schizophrenia and other psychotic disorders.


Asunto(s)
Neuronas/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Humanos
7.
Proc Natl Acad Sci U S A ; 112(33): E4610-9, 2015 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-26240334

RESUMEN

Inhibition of glycogen synthase kinase 3ß (GSK3ß) is a shared action believed to be involved in the regulation of behavior by psychoactive drugs such as antipsychotics and mood stabilizers. However, little is known about the identity of the substrates through which GSK3ß affects behavior. We identified fragile X mental retardation-related protein 1 (FXR1P), a RNA binding protein associated to genetic risk for schizophrenia, as a substrate for GSK3ß. Phosphorylation of FXR1P by GSK3ß is facilitated by prior phosphorylation by ERK2 and leads to its down-regulation. In contrast, behaviorally effective chronic mood stabilizer treatments in mice inhibit GSK3ß and increase FXR1P levels. In line with this, overexpression of FXR1P in the mouse prefrontal cortex also leads to comparable mood-related responses. Furthermore, functional genetic polymorphisms affecting either FXR1P or GSK3ß gene expression interact to regulate emotional brain responsiveness and stability in humans. These observations uncovered a GSK3ß/FXR1P signaling pathway that contributes to regulating mood and emotion processing. Regulation of FXR1P by GSK3ß also provides a mechanistic framework that may explain how inhibition of GSK3ß can contribute to the regulation of mood by psychoactive drugs in mental illnesses such as bipolar disorder. Moreover, this pathway could potentially be implicated in other biological functions, such as inflammation and cell proliferation, in which FXR1P and GSK3 are known to play a role.


Asunto(s)
Afecto , Emociones , Regulación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Unión al ARN/fisiología , Adulto , Animales , Conducta Animal , Expresión Facial , Femenino , Genotipo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora , Movimiento , Fosforilación , Polimorfismo de Nucleótido Simple , Corteza Prefrontal/fisiología , Ácido Valproico/administración & dosificación , Adulto Joven
8.
Synapse ; 71(1): 51-54, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27785835

RESUMEN

The striatum is known to be largely composed of intermingled medium-sized projection neurons expressing either the D1 or the D2 dopamine receptors. In the present study, we took advantage of the double BAC Drd1a-TdTomato/Drd2-GFP (D1 /D2 ) transgenic mice to reveal the presence of a peculiar cluster of densely-packed D1 + cells located in the shell compartment of the nucleus accumbens. This spherical cluster has a diameter of 110 µm and is exclusively composed by D1 + cells, which are all immunoreactive for the neuronal nuclear marker (NeuN). However, in contrast to other D1 + or D2 + striatal cells, those that form the accumbens cluster are devoid of calbindin (CB) and DARPP-32, two faithful markers for striatal projection neurons. Using GAD-GFP transgenic mice, we confirm the GABAergic nature of the D1 + clustered neurons. Intracellular injections from fixed brain slices indicate that these neurons are endowed with distinctive morphological features, including a small (5-6 µm), round cell body giving rise to a single primary dendrite that branches into two secondary processes. Single-neuronal injections combined to electron microscopy reveal the existence of GAP junctions linking these D1 + cells. Based on their location, morphological characteristics and neurochemical phenotype, we conclude that the D1 + accumbens cluster form a highly compact group of small neurons distinct from the larger and more diffusely distributed D1 + or D2 + striatal projection neurons that surround it. This remarkable nucleus might play a crucial role in the limbic function of the murine striatum.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Núcleo Accumbens/citología , Receptores de Dopamina D1/metabolismo , Animales , Calbindinas/genética , Calbindinas/metabolismo , Neuronas GABAérgicas/citología , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
9.
Methods ; 92: 64-71, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320830

RESUMEN

The realization that G-protein coupled receptors (GPCR) engage several cell signaling mechanisms simultaneously has led to a multiplication of research aimed at developing biased ligands exerting a selective action on subsets of responses downstream of a given receptor. Several tools have been developed to identify such ligands using recombinant cell systems. However the validation of biased ligand activity in animal models remains a serious challenge. Here we present a general strategy that can be used to validate biased ligand activity in vivo and supports it as a strategy for further drug development. In doing so, we placed special attention on strategies allowing to discriminate between G-protein and beta-arrestin mediated mechanisms. We also underscore differences between in vitro and in vivo systems and suggest avenues for tool development to streamline the translation of biased ligands development to pre-clinical animal models.


Asunto(s)
Arrestinas/metabolismo , Modelos Animales , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Arrestinas/farmacología , Haloperidol/metabolismo , Haloperidol/farmacología , Humanos , Ligandos , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica/fisiología , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D2/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , beta-Arrestinas
11.
J Biol Chem ; 289(17): 11715-11724, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24619418

RESUMEN

Striatal dopamine D2 receptor (D2R) relies upon G protein- and ß-arrestin-dependent signaling pathways to convey its action on motor control and behavior. Considering that D2R activation inhibits Akt in the striatum and that huntingtin physiological functions are affected by Akt phosphorylation, we sought to investigate whether D2R-mediated signaling could regulate huntingtin phosphorylation. We demonstrate that D2R activation decreases huntingtin phosphorylation on its Akt site. This dephosphorylation event depends upon the Gαi-dependent engagement of specific members of the protein phosphatase metallo-dependent (PPM/PP2C) family and is independent of ß-arrestin 2. These observations identify the PPM/PP2C family as a mediator of G protein-coupled receptor signaling and thereby suggest a novel mechanism of dopaminergic signaling.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Receptores de Dopamina D2/metabolismo , Animales , Células HEK293 , Humanos , Proteína Huntingtina , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso , Proteínas Nucleares , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
12.
J Recept Signal Transduct Res ; 35(3): 224-32, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26459714

RESUMEN

Mood stabilizers are a heterogeneous class of drugs having antidepressant and anti-manic effects in bipolar disorders, depression and schizophrenia. Despite wide clinical applications, the mechanisms underlying their shared actions and therapeutic specificity are unknown. Here, we examine the effects of the structurally unrelated mood stabilizers lamotrigine, lithium and valproate on G protein and beta-arrestin-dependent components of dopamine D2 receptor signaling and assess their contribution to the behavioral effects of these drugs. When administered chronically to mice lacking either D2 receptors or beta-arrestin 2, lamotrigine, lithium and valproate failed to affect Akt/GSK3 signaling as they do in normal littermates. This lack of effect on signaling resulted in a loss of responsiveness to mood stabilizers in tests assessing "antimanic" or "antidepressant"-like behavioral drug effects. This shows that mood stabilizers lamotrigine, lithium and valproate can exert behavioral effects in mice by disrupting the beta-arrestin 2-mediated regulation of Akt/GSK3 signaling by D2 dopamine receptors, thereby suggesting a shared mechanism for mood stabilizer selectivity.


Asunto(s)
Arrestinas/metabolismo , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Psicotrópicos/administración & dosificación , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos del Humor/tratamiento farmacológico , Trastornos del Humor/metabolismo
13.
J Neurosci ; 33(46): 18125-33, 2013 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-24227722

RESUMEN

Several studies have reported the coupling of dopamine signaling to phospholipase C ß (PLCß) both in vitro and in vivo. However, the precise physiological relevance of this signaling pathway in mediating dopamine behaviors is still unclear. Here we report that stimulation of dopamine receptor signaling in vivo with systemic administration of apomorphine, amphetamine, and cocaine leads to increased production of inositol triphosphate (IP3) in the mouse striatum. Using selective antagonists and dopamine D1 and D2 receptor knock-out animals, we show that the production of IP3 is mediated by the D1 receptor, but not the D2 receptor. A selective blocker of PLCß, U73122, was used to assess the physiological relevance of D1-mediated IP3 production. We show that U73122 inhibits the locomotor-stimulating effects of apomorphine, amphetamine, cocaine, and SKF81297. Furthermore, U73122 also suppresses the spontaneous hyperactivity exhibited by dopamine transporter knock-out mice. Importantly, the effects of U73122 are selective to dopamine-mediated hyperactivity, as this compound does not affect hyperactivity induced by the glutamate NMDA receptor antagonist MK801. Finally, we present evidence showing that an imbalance of D1- and D2-mediated signaling following U73122 treatment modifies the locomotor output of animals from horizontal locomotor activity to vertical activity, further highlighting the importance of the PLCß pathway in the regulation of forward locomotion via dopamine receptors.


Asunto(s)
Actividad Motora/fisiología , Fosfolipasa C beta/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica/fisiología
14.
Mol Pharmacol ; 86(4): 378-89, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25028482

RESUMEN

The voltage-gated Nav1.5 channel is essential for the propagation of action potentials in the heart. Malfunctions of this channel are known to cause hereditary diseases. It is a prime target for class 1 antiarrhythmic drugs and a number of antidepressants. Our study investigated the Nav1.5 blocking properties of fluoxetine, a selective serotonin reuptake inhibitor. Nav1.5 channels were expressed in HEK-293 cells, and Na(+) currents were recorded using the patch-clamp technique. Dose-response curves of racemic fluoxetine (IC50 = 39 µM) and its optical isomers had a similar IC50 [40 and 47 µM for the (+) and (-) isomers, respectively]. Norfluoxetine, a fluoxetine metabolite, had a higher affinity than fluoxetine, with an IC50 of 29 µM. Fluoxetine inhibited currents in a frequency-dependent manner, shifted steady-state inactivation to more hyperpolarized potentials, and slowed the recovery of Nav1.5 from inactivation. Mutating a phenylalanine (F1760) and a tyrosine (Y1767) in the S6 segment of domain (D) IV (DIVS6) significantly reduced the affinity of fluoxetine and its frequency-dependent inhibition. We used a noninactivating Nav1.5 mutant to show that fluoxetine displays open-channel block behavior. The molecular model of fluoxetine in Nav1.5 was in agreement with mutational experiments in which F1760 and Y1767 were found to be the key residues in binding fluoxetine. We concluded that fluoxetine blocks Nav1.5 by binding to the class 1 antiarrhythmic site. The blocking of cardiac Na(+) channels should be taken into consideration when prescribing fluoxetine alone or in association with other drugs that may be cardiotoxic or for patients with conduction disorders.


Asunto(s)
Fluoxetina/farmacología , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Secuencia de Aminoácidos , Antiarrítmicos/farmacología , Sitios de Unión , Fluoxetina/efectos adversos , Fluoxetina/farmacocinética , Células HEK293 , Humanos , Concentración 50 Inhibidora , Activación del Canal Iónico , Datos de Secuencia Molecular , Mutación , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/genética , Unión Proteica , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacocinética , Bloqueadores de los Canales de Sodio/farmacocinética
15.
Proc Natl Acad Sci U S A ; 108(17): 7016-21, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21482778

RESUMEN

Cell signaling involves dynamic changes in protein oligomerization leading to the formation of different signaling complexes and modulation of activity. Spatial intensity distribution analysis (SpIDA) is an image analysis method that can directly measure oligomerization and trafficking of endogenous proteins in single cells. Here, we show the use of SpIDA to quantify dimerization/activation and surface transport of receptor protein kinases--EGF receptor and TrkB--at early stages of their transactivation by several G protein-coupled receptors (GPCRs). Transactivation occurred on the same timescale and was directly limited by GPCR activation but independent of G-protein coupling types. Early receptor protein kinase transactivation and internalization were not interdependent for all receptor pairs tested, revealing heterogeneity between groups of GPCRs. SpIDA also detected transactivation of TrkB by dopamine receptors in intact neurons. By allowing for time and space resolved quantification of protein populations with heterogeneous oligomeric states, SpIDA provides a unique approach to undertake single cell multivariate quantification of signaling processes involving changes in protein interactions, trafficking, and activity.


Asunto(s)
Receptores ErbB/metabolismo , Neuronas/metabolismo , Multimerización de Proteína/fisiología , Receptor trkB/metabolismo , Receptores Dopaminérgicos/metabolismo , Activación Transcripcional/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Receptores ErbB/genética , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/citología , Receptor trkB/genética , Receptores Dopaminérgicos/genética
16.
Pharmacol Rev ; 63(1): 182-217, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21303898

RESUMEN

G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Pharmacological agents targeting dopaminergic neurotransmission have been clinically used in the management of several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity disorder (ADHD(1)), and Tourette's syndrome. Numerous advances have occurred in understanding the general structural, biochemical, and functional properties of dopamine receptors that have led to the development of multiple pharmacologically active compounds that directly target dopamine receptors, such as antiparkinson drugs and antipsychotics. Recent progress in understanding the complex biology of dopamine receptor-related signal transduction mechanisms has revealed that, in addition to their primary action on cAMP-mediated signaling, dopamine receptors can act through diverse signaling mechanisms that involve alternative G protein coupling or through G protein-independent mechanisms via interactions with ion channels or proteins that are characteristically implicated in receptor desensitization, such as ß-arrestins. One of the future directions in managing dopamine-related pathologic conditions may involve a transition from the approaches that directly affect receptor function to a precise targeting of postreceptor intracellular signaling modalities either directly or through ligand-biased signaling pharmacology. In this comprehensive review, we discuss dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms. In addition, we discuss the abnormalities of dopamine receptor expression, function, and signaling that are documented in human disorders and the current pharmacology and emerging trends in the development of novel therapeutic agents that act at dopamine receptors and/or on related signaling events.


Asunto(s)
Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Receptores Dopaminérgicos/fisiología , Animales , Agonistas de Dopamina/uso terapéutico , Antagonistas de Dopamina/uso terapéutico , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ligandos , Terapia Molecular Dirigida , Receptores Dopaminérgicos/química , Receptores Dopaminérgicos/genética , Transducción de Señal/efectos de los fármacos
17.
Artículo en Inglés | MEDLINE | ID: mdl-38000716

RESUMEN

BACKGROUND: miR-137 is a microRNA involved in brain development, regulating neurogenesis and neuronal maturation. Genome-wide association studies have implicated miR-137 in schizophrenia risk but do not explain its involvement in brain function and underlying biology. Polygenic risk for schizophrenia mediated by miR-137 targets is associated with working memory, although other evidence points to emotion processing. We characterized the functional brain correlates of miR-137 target genes associated with schizophrenia while disentangling previously reported associations of miR-137 targets with working memory and emotion processing. METHODS: Using RNA sequencing data from postmortem prefrontal cortex (N = 522), we identified a coexpression gene set enriched for miR-137 targets and schizophrenia risk genes. We validated the relationship of this set to miR-137 in vitro by manipulating miR-137 expression in neuroblastoma cells. We translated this gene set into polygenic scores of coexpression prediction and associated them with functional magnetic resonance imaging activation in healthy volunteers (n1 = 214; n2 = 136; n3 = 2075; n4 = 1800) and with short-term treatment response in patients with schizophrenia (N = 427). RESULTS: In 4652 human participants, we found that 1) schizophrenia risk genes were coexpressed in a biologically validated set enriched for miR-137 targets; 2) increased expression of miR-137 target risk genes was mediated by low prefrontal miR-137 expression; 3) alleles that predict greater gene set coexpression were associated with greater prefrontal activation during emotion processing in 3 independent healthy cohorts (n1, n2, n3) in interaction with age (n4); and 4) these alleles predicted less improvement in negative symptoms following antipsychotic treatment in patients with schizophrenia. CONCLUSIONS: The functional translation of miR-137 target gene expression linked with schizophrenia involves the neural substrates of emotion processing.


Asunto(s)
MicroARNs , Esquizofrenia , Humanos , Estudio de Asociación del Genoma Completo , Encéfalo , MicroARNs/genética , MicroARNs/metabolismo , Emociones
18.
J Neurosci ; 32(30): 10383-95, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22836271

RESUMEN

Growing evidence suggests that galectin-3 is involved in fine tuning of the inflammatory responses at the periphery, however, its role in injured brain is far less clear. Our previous work demonstrated upregulation and coexpression of galectin-3 and IGF-1 in a subset of activated/proliferating microglial cells after stroke. Here, we tested the hypothesis that galectin-3 plays a pivotal role in mediating injury-induced microglial activation and proliferation. By using a galectin-3 knock-out mouse (Gal-3KO), we demonstrated that targeted disruption of the galectin-3 gene significantly alters microglia activation and induces ∼4-fold decrease in microglia proliferation. Defective microglia activation/proliferation was further associated with significant increase in the size of ischemic lesion, ∼2-fold increase in the number of apoptotic neurons, and a marked deregulation of the IGF-1 levels. Next, our results revealed that contrary to WT cells, the Gal3-KO microglia failed to proliferate in response to IGF-1. Moreover, the IGF-1-mediated mitogenic microglia response was reduced by N-glycosylation inhibitor tunicamycine while coimmunoprecipitation experiments revealed galectin-3 binding to IGF-receptor 1 (R1), thus suggesting that interaction of galectin-3 with the N-linked glycans of receptors for growth factors is involved in IGF-R1 signaling. While the canonical IGF-1 signaling pathways were not affected, we observed an overexpression of IL-6 and SOCS3, suggesting an overactivation of JAK/STAT3, a shared signaling pathway for IGF-1/IL-6. Together, our findings suggest that galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Proliferación Celular/efectos de los fármacos , Galectina 3/metabolismo , Microglía/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Células Cultivadas , Galectina 3/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/patología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
19.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123151

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
20.
J Psychiatry Neurosci ; 37(1): 7-16, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21711983

RESUMEN

Mental illnesses, such as bipolar disorder, attention-deficit/hyperactivity disorder, depression and schizophrenia are a major public health concern worldwide. Several pharmacologic agents acting on monoamine neurotransmission are used for the management of these disorders. However, there is still little understanding of the ultimate molecular mechanisms responsible for the therapeutic effects of these drugs or their relations with disease etiology. Here I provide an overview of recent advances on the involvement of the signalling molecules Akt and glycogen synthase kinase-3 (GSK3) in the regulation of behaviour by the monoamine neurotransmitters dopamine (DA) and serotonin (5-HT). I examine the possible participation of these signalling molecules to the effects of antidepressants, lithium and antipsychotics, as well as their possible contribution to mental disorders. Regulation of Akt and GSK3 may constitute an important signalling hub in the subcellular integration of 5-HT and DA neurotransmission. It may also provide a link between the action of these neurotransmitters and gene products, like disrupted in schizophrenia 1 (DISC1) and neuregulin (NRG), that are associated with increased risk for mental disorders. However, changes in Akt and GSK3 signalling are not restricted to a single disorder, and their contribution to specific behavioural symptoms or therapeutic effects may be modulated by broader changes in biologic contexts or signalling landscapes. Understanding these interactions may provide a better understanding of mental illnesses, leading to better efficacy of new therapeutic approaches.


Asunto(s)
Dopamina/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Trastornos Mentales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serotonina/metabolismo , Transmisión Sináptica/fisiología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Humanos , Trastornos Mentales/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Transmisión Sináptica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA