Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(21)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34770344

RESUMEN

(1) Background: Small Animal Fast Insert for MRI detector I (SAFIR-I) is a preclinical Positron Emission Tomography (PET) insert for the Bruker BioSpec 70/30 Ultra Shield Refrigerated (USR) preclinical 7T Magnetic Resonance Imaging (MRI) system. It is designed explicitly for high-rate kinetic studies in mice and rats with injected activities reaching 500MBq, enabling truly simultaneous quantitative PET and Magnetic Resonance (MR) imaging with time frames of a few seconds in length. (2) Methods: SAFIR-I has an axial field of view of 54.2mm and an inner diameter of 114mm. It employs Lutetium Yttrium OxyorthoSilicate (LYSO) crystals and Multi Pixel Photon Counter (MPPC) arrays. The Position-Energy-Timing Application Specific Integrated Circuit, version 6, Single Ended (PETA6SE) digitizes the MPPC signals and provides time stamps and energy information. (3) Results: SAFIR-I is MR-compatible. The system's Coincidence Resolving Time (CRT) and energy resolution are between separate-uncertainty 209.0(3)ps and separate-uncertainty 12.41(02) Full Width at Half Maximum (FWHM) at low activity and separate-uncertainty 326.89(12)ps and separate-uncertainty 20.630(011) FWHM at 550MBq, respectively. The peak sensitivity is ∼1.6. The excellent performance facilitated the successful execution of first in vivo rat studies beyond 300MBq. Based on features visible in the acquired images, we estimate the spatial resolution to be ∼2mm in the center of the Field Of View (FOV). (4) Conclusion: The SAFIR-I PET insert provides excellent performance, permitting simultaneous in vivo small animal PET/MR image acquisitions with time frames of a few seconds in length at activities of up to 500MBq.


Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Animales , Diseño de Equipo , Cinética , Ratones , Fantasmas de Imagen , Fotones , Ratas
2.
EJNMMI Phys ; 10(1): 81, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38085381

RESUMEN

BACKGROUND: Small Animal Fast Insert for MRI detector I (SAFIR-I) is a novel Positron Emission Tomography insert for a [Formula: see text] Bruker BioSpec 70/30 Ultra Shield Refrigerated Magnetic Resonance Imaging (MRI) system. It facilitates truly simultaneous quantitative imaging in mice and rats at injected activities as high as [Formula: see text]. Exploitation of the resulting high count rates enables quick image formation at few seconds per frame. In this investigation, key performance parameters of SAFIR-I have been determined according to the evaluations outlined in the National Electrical Manufacturers Association (NEMA) Standards Publication NU 4-2008 (NEMA-NU4) protocol. RESULTS: Using an energy window of 391 to [Formula: see text] and a Coincidence Timing Window of [Formula: see text], the following performance was observed: The average spatial resolution at [Formula: see text] radial offset (Full Width at Half Maximum) is [Formula: see text] when using Filtered Backprojection, 3D Reprojection reconstruction. For the mouse- and rat-like phantoms, the maximal Noise-Equivalent Count Rates (NECRs) are [Formula: see text] at the highest tested average effective concentration of [Formula: see text], and [Formula: see text] at the highest tested average effective concentration of [Formula: see text], respectively. The NECR peak is not yet reached for either of these cases. The peak sensitivity is [Formula: see text]. The Image Quality phantom uniformity standard deviation is [Formula: see text]. The Recovery Coefficient for the [Formula: see text] rod is [Formula: see text]. The Spill-Over Ratios are [Formula: see text] and [Formula: see text], for the water- and air-filled cylinder, respectively. An accuracy of [Formula: see text] was achieved for the quantitative calibration of reconstructed voxel values. CONCLUSIONS: The measured performance parameters indicate that the various design goals have been achieved. SAFIR-I offers excellent performance, especially at the high activities it was designed for. This facilitates planned experiments with fast tracer kinetics in small animals. Ways to potentially improve performance can still be explored. Simultaneously, further performance gains can be expected for a forthcoming insert featuring 2.7 times longer axial coverage named Small Animal Fast Insert for MRI detector II (SAFIR-II).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA