Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Pain ; 14: 100137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38099279

RESUMEN

Brain-related plasticity can occur at a significant rate varying on the developmental period. Adolescence in particular has been identified as a period of growth and change across the structure and function of the nervous system. Notably, research has identified migraines as common in both pediatric and adult populations, but evidence suggests that the phenotype for migraines may differ in these cohorts due to the unique needs of each developmental period. Accordingly, primary aims of this study were to define hippocampal structure in females (7-27 years of age) with and without migraine, and to determine whether this differs across developmental stages (i.e., childhood, adolescence, and young adulthood). Hippocampal volume was quantified based on high-resolution structural MRI using FMRIB's Integrated Registration and Segmentation Tool. Results indicated that migraine and age may have an interactional relationship with hippocampal volume, such that, while hippocampal volumes were lower in female migraineurs (compared to age-matched controls) during childhood and adolescence, this contrast differed during young adulthood whereby hippocampal volumes were higher in migraineurs (compared to age-matched controls). Subsequent vertex analysis localized this interaction effect in hippocampal volume to displacement of the anterior hippocampus. The transition of hippocampal volume during adolescent development in migraineurs suggests that hippocampal plasticity may dynamically reflect components of migraine that change over the lifespan, exerting possible altered responsivity to stress related to migraine attacks thus having physiological expression and psychosocial impact.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA