Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pept Sci ; : e3597, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38523558

RESUMEN

The recently developed mRNA-based coronavirus SARS-CoV-2 vaccines highlighted the great therapeutic potential of the mRNA technology. Although the lipid nanoparticles used for the delivery of the mRNA are very efficient, they showed, in some cases, the induction of side effects as well as the production of antibodies directed against particle components. Thus, the development of alternative delivery systems is of great interest in the pursuit of more effective mRNA treatments. In the present work, we evaluated the mRNA transfection capacities of a series of cationic histidine-rich amphipathic peptides derived from LAH4. We found that while the LAH4-A1 peptide was an efficient carrier for mRNA, its activity was highly serum sensitive. Interestingly, modification of this cell penetrating peptide at the N-terminus with two tyrosines or with salicylic acid allowed to confer serum resistance to the carrier.

2.
Proc Natl Acad Sci U S A ; 117(32): 19446-19454, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32723829

RESUMEN

Antimicrobial peptides are important candidates for developing new classes of antibiotics because of their potency against antibiotic-resistant pathogens. Current research focuses on topical applications and it is unclear how to design peptides with systemic efficacy. To address this problem, we designed two potent peptides by combining database-guided discovery with structure-based design. When bound to membranes, these two short peptides with an identical amino acid composition can adopt two distinct amphipathic structures: A classic horizontal helix (horine) and a novel vertical spiral structure (verine). Their horizontal and vertical orientations on membranes were determined by solid-state 15N NMR data. While horine was potent primarily against gram-positive pathogens, verine showed broad-spectrum antimicrobial activity. Both peptides protected greater than 80% mice from infection-caused deaths. Moreover, horine and verine also displayed significant systemic efficacy in different murine models comparable to conventional antibiotics. In addition, they could eliminate resistant pathogens and preformed biofilms. Significantly, the peptides showed no nephrotoxicity to mice after intraperitoneal or intravenous administration for 1 wk. Our study underscores the significance of horine and verine in fighting drug-resistant pathogens.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Secuencia de Aminoácidos , Animales , Antibacterianos/metabolismo , Antibacterianos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/tratamiento farmacológico , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Membrana Celular/metabolismo , Bases de Datos de Proteínas , Diseño de Fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pruebas de Sensibilidad Microbiana , Relación Estructura-Actividad , Resultado del Tratamiento
3.
Amino Acids ; 53(8): 1241-1256, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34251525

RESUMEN

The antimicrobial peptides Ocellatin-LB1, -LB2 and -F1, isolated from frogs, are identical from residue 1 to 22, which correspond to the -LB1 sequence, whereas -LB2 carries an extra N and -F1 additional NKL residues at their C-termini. Despite the similar sequences, previous investigations showed different spectra of activities and biophysical investigations indicated a direct correlation between both membrane-disruptive properties and activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. This study presents experimental evidence as well as results from theoretical studies that contribute to a deeper understanding on how these peptides exert their antimicrobial activities and how small differences in the amino acid composition and their secondary structure can be correlated to these activity gaps. Solid-state NMR experiments allied to the simulation of anisotropic NMR parameters allowed the determination of the membrane topologies of these ocellatins. Interestingly, the extra Asn residue at the Ocellatin-LB2 C-terminus results in increased topological flexibility, which is mainly related to wobbling of the helix main axis as noticed by molecular dynamics simulations. Binding kinetics and thermodynamics of the interactions have also been assessed by Surface Plasmon Resonance and Isothermal Titration Calorimetry. Therefore, these investigations allowed to understand in atomic detail the relationships between peptide structure and membrane topology, which are in tune within the series -F1 > > -LB1 ≥ -LB2, as well as how peptide dynamics can affect membrane topology, insertion and binding.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Membrana Celular/efectos de los fármacos , Animales , Anuros , Calorimetría/métodos , Cinética , Espectroscopía de Resonancia Magnética/métodos , Simulación de Dinámica Molecular , Resonancia por Plasmón de Superficie , Termodinámica
4.
Faraday Discuss ; 232(0): 419-434, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34533138

RESUMEN

Biophysical and structural studies of peptide-lipid interactions, peptide topology and dynamics have changed our view of how antimicrobial peptides insert and interact with membranes. Clearly, both peptides and lipids are highly dynamic, and change and mutually adapt their conformation, membrane penetration and detailed morphology on a local and a global level. As a consequence, peptides and lipids can form a wide variety of supramolecular assemblies in which the more hydrophobic sequences preferentially, but not exclusively, adopt transmembrane alignments and have the potential to form oligomeric structures similar to those suggested by the transmembrane helical bundle model. In contrast, charged amphipathic sequences tend to stay intercalated at the membrane interface. Although the membranes are soft and can adapt, at increasing peptide density they cause pronounced disruptions of the phospholipid fatty acyl packing. At even higher local or global concentrations the peptides cause transient membrane openings, rupture and ultimately lysis. Interestingly, mixtures of peptides such as magainin 2 and PGLa, which are stored and secreted naturally as a cocktail, exhibit considerably enhanced antimicrobial activities when investigated together in antimicrobial assays and also in pore forming experiments applied to biophysical model systems. Our most recent investigations reveal that these peptides do not form stable complexes but act by specific lipid-mediated interactions and the nanoscale properties of phospholipid bilayers.


Asunto(s)
Péptidos Antimicrobianos , Lípidos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos , Magaininas , Conformación Molecular
5.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201610

RESUMEN

The accumulation of aggregated protein is a typical hallmark of many human neurodegenerative disorders, including polyglutamine-related diseases such as chorea Huntington. Misfolding of the amyloidogenic proteins gives rise to self-assembled complexes and fibres. The huntingtin protein is characterised by a segment of consecutive glutamines which, when exceeding ~ 37 residues, results in the occurrence of the disease. Furthermore, it has also been demonstrated that the 17-residue amino-terminal domain of the protein (htt17), located upstream of this polyglutamine tract, strongly correlates with aggregate formation and pathology. Here, we demonstrate that membrane interactions strongly accelerate the oligomerisation and ß-amyloid fibril formation of htt17-polyglutamine segments. By using a combination of biophysical approaches, the kinetics of fibre formation is investigated and found to be strongly dependent on the presence of lipids, the length of the polyQ expansion, and the polypeptide-to-lipid ratio. Finally, the implications for therapeutic approaches are discussed.


Asunto(s)
Membrana Celular/metabolismo , Proteína Huntingtina/metabolismo , Péptidos/metabolismo , Benzotiazoles/química , Dicroismo Circular , Dispersión Dinámica de Luz , Exones , Fluorescencia , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Membrana Dobles de Lípidos , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Péptidos/química
6.
Biochemistry ; 58(24): 2782-2795, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31120242

RESUMEN

The p24 proteins play an important role in the secretory pathway where they selectively connect various cargo to other proteins, thereby being involved in the controlled assembly and disassembly of the coat protein complexes and lipid sorting. Recently, a highly selective lipid interaction motif has been identified within the p24 transmembrane domain (TMD) that recognizes the combination of the sphingomyelin headgroup and the exact length of the C18 fatty acyl chain (SM-C18). Here, we present investigations of the structure, dynamics, and sphingomyelin interactions of the p24 transmembrane region using circular dichroism, tryptophan fluorescence, and solid-state nuclear magnetic resonance (NMR) spectroscopies of the polypeptides and the surrounding lipids. Membrane insertion and/or conformation of the TMD is strongly dependent on the membrane lipid composition where the transmembrane helical insertion is strongest in the presence of 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine (POPC) and SM-C18. By analyzing solid-state NMR angular restraints from a large number of labeled sites, we have found a tilt angle of 19° for the transmembrane helical domain at a peptide-to-lipid ratio of 1 mol %. Only minor changes in the solid-state NMR spectra are observed due to the presence of SM-C18; the only visible alterations are associated with the SM-C18 recognition motif close to the carboxy-terminal part of the hydrophobic transmembrane region in the proximity of the SM headgroup. Finally, the deuterium order parameters of POPC- d31 were nearly unaffected by the presence of SM-C18 or the polypeptide alone but decreased noticeably when the sphingomyelin and the polypeptide were added in combination.


Asunto(s)
Proteínas de la Membrana/química , Fragmentos de Péptidos/química , Esfingomielinas/química , Secuencia de Aminoácidos , Humanos , Membrana Dobles de Lípidos/química , Liposomas/química , Proteínas de la Membrana/metabolismo , Micelas , Fragmentos de Péptidos/síntesis química , Fragmentos de Péptidos/metabolismo , Fosfatidilcolinas/química , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Esfingomielinas/metabolismo
7.
Chembiochem ; 20(16): 2141-2150, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31125169

RESUMEN

Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Šapart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.


Asunto(s)
Membrana Dobles de Lípidos/química , Lipopéptidos/química , Fosfolípidos/química , Secuencia de Aminoácidos , Modelos Moleculares , Estructura Molecular , Propiedades de Superficie
8.
J Membr Biol ; 252(4-5): 371-384, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31187155

RESUMEN

The major histocompatibility complex class II (MHC II) membrane proteins are key players in the adaptive immune response. An aberrant function of these molecules is associated with a large number of autoimmune diseases such as diabetes type I and chronic inflammatory diseases. The MHC class II is assembled from DQ alpha 1 and DQ beta 1 which come together as a heterodimer through GXXXG-mediated protein-protein interactions and a highly specific protein-sphingomyelin-C18 interaction motif located on DQA1. This association can have important consequences in regulating the function of these membrane proteins. Here, we investigated the structure and topology of the DQA1 and DQB1 transmembrane helical domains by CD-, oriented 2H and 15N solid-state NMR spectroscopies. The spectra at peptide-to-lipid ratios of 0.5 to 2 mol% are indicative of a topological equilibrium involving a helix crossing the membrane with a tilt angle of about 20° and another transmembrane topology with around 30° tilt. The latter is probably representing a dimer. Furthermore, at the lowest peptide-to-lipid ratio, a third polypeptide population becomes obvious. Interestingly, the DQB1 and to a lesser extent the DQA1 transmembrane helical domains exhibit a strong fatty acyl chain disordering effect on the inner segments of the 2H-labelled palmitoyl chain of POPC bilayers. This phosphatidylcholine disordering requires the presence of sphingomyelin-C18 suggesting that the ensemble of transmembrane polypeptide and sphingolipid exerts positive curvature strain.


Asunto(s)
Cadenas alfa de HLA-DQ/química , Cadenas beta de HLA-DQ/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Secuencias de Aminoácidos , Cadenas alfa de HLA-DQ/metabolismo , Cadenas beta de HLA-DQ/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos
9.
J Pept Sci ; 25(5): e3163, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30884009

RESUMEN

Tyrocidines are a family of cyclic decapeptides produced by the soil bacterium, Brevibacillus parabrevis. These antibiotic peptides can be used to prevent infections in agriculture and food industry but also to prepare antimicrobial lozenges, creams, and dressings for medical applications. It has been observed that the tyrocidines interact with saccharides such as cellulose from their soil environment, as well as sugars in culture media and glycans in fungal cell walls. Here, we investigated the interactions of tyrocidines with glucose, sucrose, and cellotetraose (as cellulose model) in a quantitative fashion utilising CD and NMR spectroscopy. The CD and NMR spectra of tyrocidine A (TrcA) were analysed as a function of solvent composition, and the spectral properties agree with the formation of oligomeric structures that are governed by ß-sheet secondary structures once the acetonitrile content of the solvent is increased. Saccharides seem to also induce TrcA spectral changes reverting those induced by organic solvents. The CD spectral changes of TrcA in the presence of glucose agree with new ordered H-bonding, possibly ß-sheet structures. The amides involved in intramolecular H-bonding remained largely unaffected by the environmental changes. In contrast, amides exposed to the exterior and/or involved in TrcA intermolecular association show the largest 1 H chemical shift changes. CD and NMR spectroscopic investigations correlated well with TrcA-glucose interactions characterized by a dissociation constant around 200 µM. Interestingly, the association of cellotetraose corresponds closely to the additive effect from four glucose moieties, while a much higher dissociation constant was observed for sucrose. Similar trends to TrcA for binding to the three saccharides were observed for the analogous tyrocidines, tyrocidine B, and tyrocidine C. These results therefore indicate that the tyrocidine interactions with the glucose monosaccharide unit are fairly specific and reversible.


Asunto(s)
Brevibacillus/química , Oligosacáridos/química , Tirocidina/química , Brevibacillus/metabolismo , Dicroismo Circular , Espectrometría de Masas , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Tirocidina/biosíntesis , Tirocidina/aislamiento & purificación
10.
Solid State Nucl Magn Reson ; 100: 70-76, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30995597

RESUMEN

Whereas specially designed dinitroxide biradicals, reconstitution protocols, oriented sample geometries and NMR probes have helped to much increase the DNP enhancement factors of membrane samples they still lag considerably behind those obtained from glasses made of protein solutions. Here we show that not only the MAS rotor material but also the distribution of the membrane samples within the NMR rotor have a pronounced effect on the DNP enhancement. These observations are rationalized with the cooling efficiency and the internal properties of the sample, monitored by their T1 relaxation, microwave ON versus OFF signal intensities and DNP effect. The data are suggestive that for membranes the speed of cooling has a pronounced effect on the membrane properties and concomitantly the distribution of biradicals within the sample.

11.
Adv Exp Med Biol ; 1117: 33-64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30980352

RESUMEN

Even 30 years after the discovery of magainins, biophysical and structural investigations on how these peptides interact with membranes can still bear surprises and add new interesting detail to how these peptides exert their antimicrobial action. Early on, using oriented solid-state NMR spectroscopy, it was found that the amphipathic helices formed by magainins are active when being oriented parallel to the membrane surface. More recent investigations indicate that this in-planar alignment is also found when PGLa and magainin in combination exert synergistic pore-forming activities, where studies on the mechanism of synergistic interaction are ongoing. In a related manner, the investigation of dimeric antimicrobial peptide sequences has become an interesting topic of research which bears promise to refine our views how antimicrobial action occurs. The molecular shape concept has been introduced to explain the effects of lipids and peptides on membrane morphology, locally and globally, and in particular of cationic amphipathic helices that partition into the membrane interface. This concept has been extended in this review to include more recent ideas on soft membranes that can adapt to external stimuli including membrane-disruptive molecules. In this manner, the lipids can change their shape in the presence of low peptide concentrations, thereby maintaining the bilayer properties. At higher peptide concentrations, phase transitions occur which lead to the formation of pores and membrane lytic processes. In the context of the molecular shape concept, the properties of lipopeptides, including surfactins, are shortly presented, and comparisons with the hydrophobic alamethicin sequence are made.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Membrana Celular/química , Biofisica , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos , Magaininas/química , Espectroscopía de Resonancia Magnética
12.
Biophys J ; 115(6): 1033-1044, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30195937

RESUMEN

A synergistic enhancement of activities has been described for the amphipathic cationic antimicrobial peptides magainin 2 and PGLa when tested in antimicrobial assays or in biophysical experiments using model membranes. In the presence of magainin 2, PGLa changes from an in-planar alignment parallel to the membrane surface to a more transmembrane orientation when investigated in membranes made from fully saturated PC or PC/PG, but not when one of the fatty acyl chains is unsaturated. Such lipid-mediated changes in the membrane topology of polypeptide domains could provide an interesting mechanism for the regulation of membrane proteins. Here we investigated the PGLa topology in a wide variety of membranes made of saturated or unsaturated PE, PC, and/or PG using 15N solid-state NMR spectroscopy. In contrast to predictions made by previous models the data show that membrane curvature has only a minor effect on PGLa realignment. Furthermore, using 2H solid-state NMR spectroscopy of deuterated phospholipid fatty acyl chains the order parameters of the lipids were investigated in the presence of PGLa, magainin, or equimolar peptide mixtures. Both peptides cause a pronounced decrease in the order parameters when oriented parallel to the membrane surface, an effect that reverts when PGLa flips into transmembrane alignments. Taken together, these data are suggestive that the magainin-induced disordering of fatty acyl chains provides an important driving force for PGLa realignment.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Magaininas/metabolismo , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Unión Proteica
13.
Biophys J ; 115(3): 467-477, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30054032

RESUMEN

Apolipoprotein A-I is the major protein component of high-density lipoproteins and fulfils important functions in lipid metabolism. Its structure consists of a chain of tandem domains of amphipathic helices. Using this protein as a template membrane scaffolding protein, class A amphipathic helical peptides were designed to support the amphipathic helix theory and later as therapeutic tools in biomedicine. Here, we investigated the lipid interactions of two apolipoprotein-A-I-derived class A amphipathic peptides, 14A (Ac-DYLKA FYDKL KEAF-NH2) and 18A (Ac-DWLKA FYDKV AEKLK EAF- NH2), including the disc-like supramolecular structures they form with phospholipids. Thus, the topologies of 14A and 18A in phospholipid bilayers have been determined by oriented solid-state NMR spectroscopy. Whereas at a peptide-to-lipid ratio of 2 mol% the peptides align parallel to the bilayer surface, at 7.5 mol% disc-like structures are formed that spontaneously orient in the magnetic field of the NMR spectrometer. From a comprehensive data set of four 15N- or 2H-labeled positions of 14A, a tilt angle, which deviates from perfectly in-planar by 14°, and a model for the peptidic rim structure have been obtained. The tilt and helical pitch angles are well suited to cover the hydrophobic chain region of the bilayer when two peptide helices form a head-to-tail dimer. Thus, the detailed topology found in this work agrees with the peptides forming the rim of nanodiscs in a double belt arrangement.


Asunto(s)
Apolipoproteína A-I/química , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Conformación Proteica
14.
Biophys J ; 113(6): 1290-1300, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28734478

RESUMEN

The histidine-rich designer peptide LAH4-L1 exhibits antimicrobial and potent cell-penetrating activities for a wide variety of cargo including nucleic acids, polypeptides, adeno-associated viruses, and nanodots. The non-covalent complexes formed between the peptide and cargo enter the cell via an endosomal pathway where the pH changes from neutral to acidic. Here, we investigated the membrane interactions of the peptide with phospholipid bilayers and its membrane topology using static solid-state NMR spectroscopy. Oriented 15N solid-state NMR indicates that in membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine (POPS) 3:1 mol/mole and at neutral pH, the peptide adopts transmembrane topologies. Furthermore, 31P and 2H solid-state NMR spectra show that liquid crystalline 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and POPC/POPS 3:1 liposomes retain a bilayer macroscopic phase even at the highest peptide concentrations investigated, with an oblate orientational distribution of the phospholipids at a peptide/lipid ratio of 1:5. At pH 5, as it occurs in the endosome, the alignment of LAH4-L1 at a peptide/lipid ratio of 1:25 is predominantly parallel to POPC/POPS 3:1 bilayers (prolate deformation) when at the same time it induces a considerable decrease of the deuterium order parameter of POPC/2H31-POPS 3:1. In addition, when studied in mechanically supported lipid membranes, a pronounced disordering of the phospholipid alignment is observed. In the presence of even higher peptide concentrations, lipid spectra are observed that suggest the formation of magnetically oriented or isotropic bicelles. This membrane-disruptive effect is enhanced for gel phase DMPC membranes. By protonation of the four histidines in acidic environments, the overall charge and hydrophobic moment of LAH4-L1 considerably change, and much of the peptide is released from the cargo. Thus, the amphipathic peptide sequences become available to disrupt the endosomal membrane and to assure highly efficient release from this organelle.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Péptidos de Penetración Celular/química , Concentración de Iones de Hidrógeno , Membrana Dobles de Lípidos/química , Dimiristoilfosfatidilcolina/química , Resonancia Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Fosfatidilserinas/química
15.
Biochemistry ; 56(32): 4269-4278, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28699734

RESUMEN

The antimicrobial peptide GL13K encompasses 13 amino acid residues and has been designed and optimized from the salivary protein BPIFA2 to exhibit potent bacteriocidal and anti-biofilm activity against Gram-negative and Gram-positive bacteria as well as anti-lipopolysaccharide activity in vitro and in vivo. Here, the peptide was analyzed in a variety of membrane environments by circular dichroism spectroscopy and by high-resolution multidimensional solution nuclear magnetic resonance (NMR) spectroscopy. Whereas in the absence of membranes a random coil conformation predominates, the peptide adopts a helical structure from residue 5 to 11 in the presence of dodecylphosphocholine micelles. In contrast, a predominantly ß-sheet structure was observed in the presence of lipid bilayers carrying negatively charged phospholipids. Whereas 15N solid-state NMR spectra are indicative of a partial alignment of the peptide 15N-1H vector along the membrane surface, 2H and 31P solid-state NMR spectra indicate that in this configuration the peptide exhibits pronounced disordering activities on the phospholipid membrane, which is possibly related to antimicrobial action. GL13K, thus, undergoes a number of conformational transitions, including a random coil state in solution, a helical structure upon dilution at the surface of zwitterionic membranes, and ß-sheet conformations at high peptide:lipid ratios.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Resonancia Magnética Nuclear Biomolecular , Proteínas y Péptidos Salivales/química , Humanos , Estructura Secundaria de Proteína
16.
J Biol Chem ; 291(5): 2161-9, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668323

RESUMEN

Gene delivery into hCD34+ hematopoietic stem/progenitor cells (HSPCs) using human immunodeficiency virus, type 1-derived lentiviral vectors (LVs) has several promising therapeutic applications. Numerous clinical trials are currently underway. However, the efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist, such as fibronectin fragments or cationic compounds. Recently, we discovered Vectofusin-1, a new transduction enhancer, also called LAH4-A4, a short histidine-rich amphipathic peptide derived from the LAH4 family of DNA transfection agents. Vectofusin-1 enhances the infectivity of lentiviral and γ-retroviral vectors pseudotyped with various envelope glycoproteins. In this study, we compared a family of Vectofusin-1 isomers and showed that Vectofusin-1 remains the lead peptide for HSPC transduction enhancement with LVs pseudotyped with vesicular stomatitis virus glycoproteins and also with modified gibbon ape leukemia virus glycoproteins. By comparing the capacity of numerous Vectofusin-1 variants to promote the modified gibbon ape leukemia virus glycoprotein-pseudotyped lentiviral vector infectivity of HSPCs, the lysine residues on the N-terminal extremity of Vectofusin-1, a hydrophilic angle of 140° formed by the histidine residues in the Schiffer-Edmundson helical wheel representation, hydrophobic residues consisting of leucine were all found to be essential and helped to define a minimal active sequence. The data also show that the critical determinants necessary for lentiviral transduction enhancement are partially different from those necessary for efficient antibiotic or DNA transfection activity of LAH4 derivatives. In conclusion, these results help to decipher the action mechanism of Vectofusin-1 in the context of hCD34+ cell-based gene therapy.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Técnicas de Transferencia de Gen , Vectores Genéticos , Células Madre Hematopoyéticas/citología , Lentivirus , Secuencia de Aminoácidos , Antígenos CD34/metabolismo , ADN/química , Terapia Genética/métodos , Glicoproteínas/química , Células HCT116 , Células HEK293 , VIH-1/metabolismo , Células HeLa , Histidina/química , Humanos , Virus de la Leucemia del Gibón , Datos de Secuencia Molecular , Péptidos/química , Homología de Secuencia de Aminoácido , Transducción Genética , Transfección
17.
Biochim Biophys Acta Biomembr ; 1859(12): 2327-2339, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28912103

RESUMEN

Antimicrobial peptides (AMPs) represent new alternatives to cope with the increasing number of multi-drug resistant microbial infections. Recently, a derivative of the frog-skin AMP esculentin-1a, Esc(1-21), was found to rapidly kill both the planktonic and biofilm forms of the Gram-negative bacterium Pseudomonas aeruginosa with a membrane-perturbing activity as a plausible mode of action. Lately, its diastereomer Esc(1-21)-1c containing two d-amino acids i.e. DLeu14 and DSer17 revealed to be less cytotoxic, more stable to proteolytic degradation and more efficient in eradicating Pseudomonas biofilm. When tested in vitro against the free-living form of this pathogen, it displayed potent bactericidal activity, but this was weaker than that of the all-l peptide. To investigate the reason accounting for this difference, mechanistic studies were performed on Pseudomonas spheroplasts and anionic or zwitterionic membranes, mimicking the composition of microbial and mammalian membranes, respectively. Furthermore, structural studies by means of optical and nuclear magnetic resonance spectroscopies were carried out. Our results suggest that the different extent in the bactericidal activity between the two isomers is principally due to differences in their interaction with the bacterial cell wall components. Indeed, the lower ability in binding and perturbing anionic phospholipid bilayers for Esc(1-21)-1c contributes only in a small part to this difference, while the final effect of membrane thinning once the peptide is inserted into the membrane is identical to that provoked by Esc(1-21). In addition, the presence of two d-amino acids is sufficient to reduce the α-helical content of the peptide, in parallel with its lower cytotoxicity.


Asunto(s)
Proteínas Anfibias/química , Antibacterianos/química , Péptidos Catiónicos Antimicrobianos/química , Biopelículas/efectos de los fármacos , Citotoxinas/química , Pseudomonas aeruginosa/efectos de los fármacos , Secuencia de Aminoácidos , Proteínas Anfibias/aislamiento & purificación , Proteínas Anfibias/farmacología , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Péptidos Catiónicos Antimicrobianos/farmacología , Biopelículas/crecimiento & desarrollo , Colesterol/química , Citotoxinas/aislamiento & purificación , Citotoxinas/farmacología , Cinética , Leucina/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceroles/química , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo , Conformación Proteica en Hélice alfa , Pseudomonas aeruginosa/crecimiento & desarrollo , Ranidae , Serina/química , Piel/química , Esferoplastos/química , Esferoplastos/efectos de los fármacos , Estereoisomerismo , Relación Estructura-Actividad
18.
Chemphyschem ; 18(15): 2103-2113, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28574169

RESUMEN

Dynamic nuclear polarization (DNP) boosts the sensitivity of NMR spectroscopy by orders of magnitude and makes investigations previously out of scope possible. For magic-angle-spinning (MAS) solid-state NMR spectroscopy studies, the samples are typically mixed with biradicals dissolved in a glass-forming solvent and are investigated at cryotemperatures. Herein, we present new biradical polarizing agents developed for matrix-free samples such as supported lipid bilayers, which are systems widely used for the investigation of membrane polypeptides of high biomedical importance. A series of 11 biradicals with different structures, geometries, and physicochemical properties were comprehensively tested for DNP performance in lipid bilayers, some of them developed specifically for DNP investigations of membranes. The membrane-anchored biradicals PyPol-C16, AMUPOL-cholesterol, and bTurea-C16 were found to exhibit improved g-tensor alignment, inter-radical distance, and dispersion. Consequently, these biradicals show the highest signal enhancement factors so far obtained for matrix-free membranes or other matrix-free samples and may potentially shorten NMR acquisition times by three orders of magnitude. Furthermore, the optimal biradical-to-lipid ratio, sample deuteration, and membrane lipid composition were determined under static and MAS conditions. To rationalize biradical performance better, DNP enhancement was measured by using the 13 C and 15 N signals of lipids and a peptide as a function of the biradical concentration, DNP build-up time, resonance line width, quenching effect, microwave power, and MAS frequency.

19.
J Pept Sci ; 23(4): 320-328, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28067008

RESUMEN

The histidine-rich designer peptides of the LAH4 family exhibit potent antimicrobial, transfection, transduction and cell-penetrating properties. They form non-covalent complexes with their cargo, which often carry a negative overall charge at pH 7.4 and include a large range of molecules and structures such as oligonucleotides, including siRNA and DNA, peptides, proteins, nanodots and adeno-associated viruses. These complexes are thought to enter the cells through an endosomal pathway where the acidification of the organelle is essential for efficient endosomal escape. Biophysical measurements indicate that, upon acidification, almost half the peptides are released from DNA cargo, leading to the suggestion of a self-promoted uptake mechanism where the liberated peptides lyse the endosomal membranes. LAH4 derivatives also help in cellular transduction using lentiviruses. Here, we compare the DNA transfection activities of LAH4 derivatives, which vary in overall charge and/or the composition in the hydrophobic core region. In addition, LAH4 is shown to mediate the transport of functional ß-galactosidase, a large tetrameric protein of about 0.5 MDa, into the cell interior. Interestingly, the LAH1 peptide efficiently imports this protein, while it is inefficient during DNA transfection assays. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , ADN/metabolismo , Histidina/metabolismo , Transfección/métodos , beta-Galactosidasa/metabolismo , Péptidos de Penetración Celular/síntesis química , ADN/química , Células Hep G2 , Humanos , Transporte de Proteínas , Células Tumorales Cultivadas , beta-Galactosidasa/química
20.
Biophys J ; 111(10): 2162-2175, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851940

RESUMEN

A system based on two designed peptides, namely the cationic peptide K, (KIAALKE)3, and its complementary anionic counterpart called peptide E, (EIAALEK)3, has been used as a minimal model for membrane fusion, inspired by SNARE proteins. Although the fact that docking of separate vesicle populations via the formation of a dimeric E/K coiled-coil complex can be rationalized, the reasons for the peptides promoting fusion of vesicles cannot be fully explained. Therefore it is of significant interest to determine how the peptides aid in overcoming energetic barriers during lipid rearrangements leading to fusion. In this study, investigations of the peptides' interactions with neutral PC/PE/cholesterol membranes by fluorescence spectroscopy show that tryptophan-labeled K∗ binds to the membrane (KK∗ ∼6.2 103 M-1), whereas E∗ remains fully water-solvated. 15N-NMR spectroscopy, depth-dependent fluorescence quenching, CD-spectroscopy experiments, and MD simulations indicate a helix orientation of K∗ parallel to the membrane surface. Solid-state 31P-NMR of oriented lipid membranes was used to study the impact of peptide incorporation on lipid headgroup alignment. The membrane-immersed K∗ is found to locally alter the bilayer curvature, accompanied by a change of headgroup orientation relative to the membrane normal and of the lipid composition in the vicinity of the bound peptide. The NMR results were supported by molecular dynamics simulations, which showed that K reorganizes the membrane composition in its vicinity, induces positive membrane curvature, and enhances the lipid tail protrusion probability. These effects are known to be fusion relevant. The combined results support the hypothesis for a twofold role of K in the mechanism of membrane fusion: 1) to bring opposing membranes into close proximity via coiled-coil formation and 2) to destabilize both membranes thereby promoting fusion.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Fusión de Membrana , Péptidos/química , Péptidos/metabolismo , Secuencia de Aminoácidos , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA