Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(40): E8440-E8447, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923946

RESUMEN

Natural killer (NK) cells express MHC class I (MHC-I)-specific receptors, such as Ly49A, that inhibit killing of cells expressing self-MHC-I. Self-MHC-I also "licenses" NK cells to become responsive to activating stimuli and regulates the surface level of NK-cell inhibitory receptors. However, the mechanisms of action resulting from these interactions of the Ly49s with their MHC-I ligands, particularly in vivo, have been controversial. Definitive studies could be derived from mice with targeted mutations in inhibitory Ly49s, but there are inherent challenges in specifically altering a single gene within a multigene family. Herein, we generated a knock-in mouse with a targeted mutation in the immunoreceptor tyrosine-based inhibitory motif (ITIM) of Ly49A that abolished the inhibitory function of Ly49A in cytotoxicity assays. This mutant Ly49A caused a licensing defect in NK cells, but the surface expression of Ly49A was unaltered. Moreover, NK cells that expressed this mutant Ly49A exhibited an altered inhibitory receptor repertoire. These results demonstrate that Ly49A ITIM signaling is critical for NK-cell effector inhibition, licensing, and receptor repertoire development.


Asunto(s)
Citotoxicidad Inmunológica/inmunología , Genes MHC Clase I/inmunología , Motivo de Inhibición del Inmunorreceptor Basado en Tirosina , Células Asesinas Naturales/inmunología , Subfamilia A de Receptores Similares a Lectina de Células NK/fisiología , Receptores Similares a Lectina de Células NK/metabolismo , Animales , Células Cultivadas , Células Asesinas Naturales/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores Similares a Lectina de Células NK/genética , Tirosina/metabolismo
2.
bioRxiv ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38895234

RESUMEN

Natural killer (NK) cells recognize target cells through germline-encoded activation and inhibitory receptors enabling effective immunity against viruses and cancer. The Ly49 receptor family in the mouse and killer immunoglobin-like receptor family in humans play a central role in NK cell immunity through recognition of MHC class I and related molecules. Functionally, these receptor families are involved in licensing and rejection of MHC-I-deficient cells through missing-self. The Ly49 family is highly polymorphic, making it challenging to detail the contributions of individual Ly49 receptors to NK cell function. Herein, we showed mice lacking expression of all Ly49s were unable to reject missing-self target cells in vivo, were defective in NK cell licensing, and displayed lower KLRG1 on the surface of NK cells. Expression of Ly49A alone on a H-2Dd background restored missing-self target cell rejection, NK cell licensing, and NK cell KLRG1 expression. Thus, a single inhibitory Ly49 receptor is sufficient to license NK cells and mediate missing-self in vivo.

3.
Cell Rep ; 32(4): 107969, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726632

RESUMEN

Major histocompatibility complex class I (MHC-I)-restricted immune responses are largely attributed to cytotoxic T lymphocytes (CTLs). However, natural killer (NK) cells, as predicted by the missing-self hypothesis, have opposing requirements for MHC-I, suggesting that they may also demonstrate MHC-I-restricted effects. In mice, the Ly49 inhibitory receptors prevent NK cell killing of missing-self targets in effector responses, and they have a proposed second function in licensing or educating NK cells via self-MHC-I in vivo. Here we show MHC-I-restricted control of murine cytomegalovirus (MCMV) infection in vivo that is NK cell dependent. Using mice lacking specific Ly49 receptors, we show that control of MCMV requires inhibitory Ly49 receptors and an inhibitory signaling motif and the capacity for MCMV to downregulate MHC-I. Taken together, these data provide definitive evidence that the inhibitory receptors are required for missing-self rejection and are relevant to MHC-I-restricted NK cell control of a viral infection in vivo.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/metabolismo , Subfamilia A de Receptores Similares a Lectina de Células NK/metabolismo , Animales , Antígenos Ly , Infecciones por Citomegalovirus/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Células Asesinas Naturales/inmunología , Ratones , Ratones Endogámicos C57BL , Muromegalovirus/inmunología , Muromegalovirus/patogenicidad , Subfamilia A de Receptores Similares a Lectina de Células NK/inmunología , Receptores de Células Asesinas Naturales , Virosis
4.
J Exp Med ; 216(1): 99-116, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30559128

RESUMEN

Natural killer (NK) cells are innate lymphocytes that are thought to kill cells that down-regulate MHC class I (MHC-I) through "missing-self" recognition. NK cells from B2m-/- mice that lack surface MHC-I, however, are not autoreactive as predicted by the missing-self hypothesis. As a result, it is unclear if MHC-I down-regulation in vivo induces NK cell reactivity or tolerance to missing-self. Here, we generated a floxed B2m mouse to acutely down-regulate MHC-I in vivo in a host that normally expresses MHC-I. Global down-regulation of MHC-I induced NK cell hyporesponsiveness and tolerance to missing-self without overt missing-self reactivity. In contrast, down-regulation of MHC-I on a small fraction of hematopoietic cells triggered missing-self reactivity. Surprisingly, down-regulation of MHC-I only on CD4+ T cells predominately induced tolerance to missing-self without resetting NK cell responsiveness. In this setting, inflammation triggered substantial missing-self reactivity. These results show that MHC-I down-regulation can induce either NK cell tolerance or killing in vivo and that inflammation promotes missing-self reactivity.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Regulación hacia Abajo/inmunología , Tolerancia Inmunológica , Células Asesinas Naturales/inmunología , Microglobulina beta-2/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Microglobulina beta-2/genética
5.
PLoS One ; 10(1): e0116484, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25587897

RESUMEN

The bacterial CRISPR-Cas9 system has been adapted for use as a genome editing tool. While several recent reports have indicated that successful genome editing of mice can be achieved, detailed phenotypic and molecular analyses of the mutant animals are limited. Following pronuclear micro-injection of fertilized eggs with either wild-type Cas9 or the nickase mutant (D10A) and single or paired guide RNA (sgRNA) for targeting of the tyrosinase (Tyr) gene, we assessed genome editing in mice using rapid phenotypic readouts (eye and coat color). Mutant mice with insertions or deletions (indels) in Tyr were efficiently generated without detectable off-target cleavage events. Gene correction of a single nucleotide by homologous recombination (HR) could only occur when the sgRNA recognition sites in the donor DNA were modified. Gene repair did not occur if the donor DNA was not modified because Cas9 catalytic activity was completely inhibited. Our results indicate that allelic mosaicism can occur following -Cas9-mediated editing in mice and appears to correlate with sgRNA cleavage efficiency at the single-cell stage. We also show that larger than expected deletions may be overlooked based on the screening strategy employed. An unbiased analysis of all the deleted nucleotides in our experiments revealed that the highest frequencies of nucleotide deletions were clustered around the predicted Cas9 cleavage sites, with slightly broader distributions than expected. Finally, additional analysis of founder mice and their offspring indicate that their general health, fertility, and the transmission of genetic changes were not compromised. These results provide the foundation to interpret and predict the diverse outcomes following CRISPR-Cas9-mediated genome editing experiments in mice.


Asunto(s)
Sistemas CRISPR-Cas , Monofenol Monooxigenasa/genética , Fenotipo , Alelos , Animales , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Genoma , Ratones , Ratones Transgénicos , ARN Guía de Kinetoplastida
6.
J Immunol ; 172(5): 3119-31, 2004 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-14978118

RESUMEN

Cytokines and chemokines activate and direct effector cells during infection. We previously identified a functional group of five cytokines and chemokines, namely, IFN-gamma, activation-induced T cell-derived and chemokine-related cytokine/lymphotactin, macrophage-inflammatory protein 1alpha, macrophage-inflammatory protein 1beta, and RANTES, coexpressed in individual activated NK cells, CD8(+) T cells, and CD4(+) Th1 cells in vitro and during in vivo infections. However, the stimuli during infection were not known. In murine CMV (MCMV) infection, the DAP12/KARAP-associated Ly49H NK cell activation receptor is crucial for resistance through recognition of MCMV-encoded m157 but NK cells also undergo in vivo nonspecific responses to uncharacterized stimuli. In this study, we show that Ly49H ligation by m157 resulted in a coordinated release of all five cytokines/chemokines from Ly49H(+) NK cells. Whereas other cytokines also triggered the release of these cytokines/chemokines, stimulation was not confined to the Ly49H(+) population. At the single-cell level, the production of the five mediators showed strong positive correlation with each other. Interestingly, NK cells were a major source of these five cytokines/chemokines in vitro and in vivo, whereas infected macrophages produced only limited amounts of macrophage-inflammatory protein 1alpha, macrophage-inflammatory protein1beta, and RANTES. These findings suggest that both virus-specific and nonspecific NK cells play crucial roles in activating and directing other inflammatory cells during MCMV infection.


Asunto(s)
Quimiocinas/biosíntesis , Citocinas/biosíntesis , Infecciones por Herpesviridae/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/virología , Muromegalovirus/inmunología , Animales , Antígenos Ly/inmunología , Antígenos Ly/metabolismo , Antígenos Ly/fisiología , Células Cultivadas , Quimiocina CCL4 , Quimiocina CCL5/biosíntesis , Quimiocinas C , Técnicas de Cocultivo , Citocinas/fisiología , Infecciones por Herpesviridae/metabolismo , Interferón gamma/biosíntesis , Células Asesinas Naturales/metabolismo , Lectinas Tipo C , Activación de Linfocitos/inmunología , Linfocinas/biosíntesis , Proteínas Inflamatorias de Macrófagos/biosíntesis , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Ratones , Ratones Endogámicos C57BL , Ratones SCID , Subfamilia A de Receptores Similares a Lectina de Células NK , Receptores Similares a Lectina de Células NK , Sialoglicoproteínas/biosíntesis
7.
Proc Natl Acad Sci U S A ; 99(13): 8826-31, 2002 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-12060703

RESUMEN

Natural killer (NK) cells express inhibitory and activation receptors that recognize MHC class I-like molecules on target cells. These receptors may be involved in the critical role of NK cells in controlling initial phases of certain viral infections. Indeed, the Ly49H NK cell activation receptor confers in vivo genetic resistance to murine cytomegalovirus (MCMV) infections, but its ligand was previously unknown. Herein, we use heterologous reporter cells to demonstrate that Ly49H recognizes MCMV-infected cells and a ligand encoded by MCMV itself. Exploiting a bioinformatics approach to the MCMV genome, we find at least 11 ORFs for molecules with previously unrecognized features of predicted MHC-like folds and limited MHC sequence homology. We identify one of these, m157, as the ligand for Ly49H. m157 triggers Ly49H-mediated cytotoxicity, and cytokine and chemokine production by freshly isolated NK cells. We hypothesize that the other ORFs with predicted MHC-like folds may be involved in immune evasion or interactions with other NK cell receptors.


Asunto(s)
Células Asesinas Naturales/inmunología , Muromegalovirus/inmunología , Receptores de Superficie Celular/inmunología , Animales , Ligandos , Ratones , Sistemas de Lectura Abierta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA