Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-25700740

RESUMEN

Gene expression profiles are increasingly being used as biomarkers to detect the physiological responses of a number of species to disease, nutrition, and other stressors. However, little attention has been given to using gene expression to assess the stressors and physiological status of marine mammals. We sought to develop and validate a nutrigenomic approach to quantify nutritional stress in Steller sea lions (Eumetopias jubatus). We subjected 4 female Steller sea lions to 3 feeding regimes over 70-day trials (unrestricted food intake, acute nutritional stress, and chronic nutritional stress), and drew blood samples from each animal at the end of each feeding regime. We then extracted the RNA of white blood cells and measured the response of 8 genes known to react to diet restriction in terrestrial mammals. Overall, we found that the genomic response of Steller sea lions experiencing nutritional stress was consistent with how terrestrial mammals respond to dietary restrictions. Our nutritionally stressed sea lions down-regulated some cellular processes involved in immune response and oxidative stress, and up-regulated pro-inflammatory responses and metabolic processes. Nutrigenomics appears to be a promising means to monitor nutritional status and contribute to mitigation measures needed to assist in the recovery of Steller sea lions and other at-risk species of marine mammals.


Asunto(s)
Perfilación de la Expresión Génica , Nutrigenómica , Leones Marinos/fisiología , Estrés Fisiológico , Animales , Leones Marinos/sangre , Leones Marinos/genética
2.
BMC Evol Biol ; 14: 259, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25527898

RESUMEN

BACKGROUND: Allopatric divergence across lineages can lead to post-zygotic reproductive isolation upon secondary contact and disrupt coevolution between mitochondrial and nuclear genomes, promoting emergence of genetic incompatibilities. A previous F ST scan on the transcriptome of the Baltic clam Macoma balthica highlighted several genes potentially involved in mito-nuclear incompatibilities (MNIs). As proteins involved in the mitochondrial oxidative phosphorylation (OXPHO) chain are prone to MNIs and can contribute to the maintenance of genetic barriers, the mitochondrial genomes of six Ma. balthica individuals spanning two secondary contact zones were sequenced using the Illumina MiSeq plateform. RESULTS: The mitogenome has an approximate length of 16,806 bp and encodes 13 protein-coding genes, 2 rRNAs and 22 tRNAs, all located on the same strand. atp8, a gene long reported as rare in bivalves, was detected. It encodes 42 amino acids and is putatively expressed and functional. A large unassigned region was identified between rrnS and tRNA (Met) and could likely correspond to the Control Region. Replacement and synonymous mutations were mapped on the inferred secondary structure of all protein-coding genes of the OXPHO chain. The atp6 and atp8 genes were characterized by background levels of replacement mutations, relative to synonymous mutations. However, most nad genes (notably nad2 and nad5) were characterized by an elevated proportion of replacement mutations. CONCLUSIONS: Six nearly complete mitochondrial genomes were successfully assembled and annotated, providing the necessary roadmap to study MNIs at OXPHO loci. Few replacement mutations were mapped on mitochondrial-encoded ATP synthase subunits, which is in contrast with previous data on nuclear-encoded subunits. Conversely, the high population divergence and the prevalence of non-synonymous mutations at nad genes are congruent with previous observations from the nuclear transcriptome. This further suggest that MNIs between subunits of Complex I of the OXPHO chain, coding for NADH dehydrogenase, may play a role in maintaining barriers to gene flow in Ma. balthica.


Asunto(s)
Bivalvos/citología , Bivalvos/genética , Núcleo Celular , Genoma Mitocondrial , Mitocondrias , Animales , ADN Intergénico , Evolución Molecular , Proteínas de la Membrana/genética , Anotación de Secuencia Molecular , ARN Ribosómico/genética , ARN de Transferencia/genética
3.
Ecol Evol ; 13(8): e10320, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37636868

RESUMEN

Taking advantage of the unique system of doubly uniparental inheritance (DUI) of mitochondria, we developed a reliable molecular method to sex individuals of the marine bivalve Macoma balthica rubra. In species with DUI (~100 known bivalves), both sexes transmit their mitochondria: males bear both a male- and female-type mitogenome, while females bear only the female type. Male and female mitotypes are sufficiently divergent to reliably PCR-amplify them specifically. Loop-mediated isothermal amplification (LAMP) is a precise, economical and portable alternative to PCR for molecular sexing and we demonstrate its application in this context. We used 154 individuals sampled along the Atlantic coast of France and sexed microscopically by gonad examination to test for the congruence among gamete type, PCR sexing and LAMP sexing. We show an exact match among the sexing results from these three methods using the male and female mt-cox1 genes. DUI can be disrupted in inter-specific hybrids, causing unexpected distribution of mitogenomes, such as homoplasmic males or heteroplasmic females. To our knowledge, DUI disruption at the intra-specific scale has never been tested. We applied our sexing protocol to control for unexpected heteroplasmy caused by hybridization between divergent genetic lineages and found no evidence of disruption in the mode of mitochondrial inheritance in M. balthica rubra. We propose LAMP as a useful tool to accelerate eco-evolutionary studies of DUI. It offers the opportunity to investigate the potential role of, previously unaccounted-for, sex-specific patterns such as sexual selection or sex-specific dispersal bias in the evolution of free-spawning benthic species.

4.
BMC Ecol Evol ; 22(1): 29, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35272625

RESUMEN

BACKGROUND: Scallops (Bivalvia: Pectinidae) present extraordinary variance in both mitochondrial genome size, structure and content, even when compared to the extreme diversity documented within Mollusca and Bivalvia. In pectinids, mitogenome rearrangements involve protein coding and rRNA genes along with tRNAs, and different genome organization patterns can be observed even at the level of Tribes. Existing pectinid phylogenies fail to resolve some relationships in the family, Chlamydinae being an especially problematic group. RESULTS: In our study, we sequenced, annotated and characterized the mitochondrial genome of a member of Chlamydinae, Mimachlamys varia-a species of commercial interest and an effective bioindicator-revealing yet another novel gene arrangement in the Pectinidae. The phylogeny based on all mitochondrial protein coding and rRNA genes suggests the paraphyly of the Mimachlamys genus, further commending the taxonomic revision of the classification within the Chlamydinae subfamily. At the scale of the Pectinidae, we found that 15 sequence blocks are involved in mitogenome rearrangements, which behave as separate units. CONCLUSIONS: Our study reveals incongruities between phylogenies based on mitochondrial protein-coding versus rRNA genes within the Pectinidae, suggesting that locus sampling affects phylogenetic inference at the scale of the family. We also conclude that the available taxon sampling does not allow for understanding of the mechanisms responsible for the high variability of mitogenome architecture observed in the Pectinidae, and that unraveling these processes will require denser taxon sampling.


Asunto(s)
Bivalvos , Genoma Mitocondrial , Pectinidae , Animales , Bivalvos/genética , Genoma Mitocondrial/genética , Proteínas Mitocondriales/genética , Filogenia
5.
PeerJ ; 9: e11966, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35036110

RESUMEN

Foliose species of the genus Ulva are notoriously difficult to identify due to their variable morphological characteristics and high phenotypic plasticity. We reassessed the taxonomic status of several distromatic foliose Ulva spp., morphologically related to Ulva rigida, using DNA barcoding with the chloroplastic tufA and rbcL (for a subset of taxa) genes for 339 selected attached Ulva specimens collected from three intertidal rocky sites. Two of the collection sites were in Brittany and one site was in Vendée, along the Atlantic coast of France. Molecular analyses included several museum specimens and the holotype of Ulva armoricana Dion, Reviers & Coat. We identified five different tufA haplotypes using a combination of phylogenetic analysis, with the support of several recently sequenced holotypes and lectotypes, and a species delimitation method based on hierarchical clustering. Four haplotypes were supported by validly named species: Ulva australis Areschoug, Ulva fenestrata Postels & Ruprecht, Ulva lacinulata (Kützing) Wittrock and U. rigida C. Agardh. The later was additionally investigated using rbcL. The fifth haplotype represented exact sequence matches to an unnamed species from European Atlantic coasts. Our results support: (1) the synonymy of both U. rigida sensu Bliding non C. Agardh and U. armoricana with U. lacinulata. This finding is based on current genetic analysis of tufA from the U. armoricana holotype and recent molecular characterization of the lectotype of U. laetevirens, which is synonymous to U. australis, (2) the presence of U. australis as a misidentified introduced species in Brittany, and (3) the presence of U. fenestrata and U. rigida in southern Brittany. The taxonomic history of each species is discussed, highlighting issues within distromatic foliose taxa of the genus Ulva and the need to genetically characterize all its available type specimens.

6.
Sci Total Environ ; 640-641: 662-670, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29870942

RESUMEN

Increasing activity along the French Atlantic coast has led to chronic pollution with, in particular, mixtures of contaminants such as hydrocarbons, phytosanitary products, PCBs and heavy metals. Based on previous research, pollution biomarkers were used in this study as they can indicate health status when monitoring the impact of pollutants on coastal species such as the marine bivalve Mimachlamys varia. Mollusc bivalves were sampled in March 2016, in open and semi-open areas (a harbour zone), from thirteen sites which differed in terms of their level of pollution, and were located along the Atlantic coast from Brittany down to the Nouvelle-Aquitaine region. First, analyses of heavy metals and organic contaminants (e.g. pesticides, polycyclic aromatic hydrocarbons, polychlorobiphenyl) in the digestive gland of bivalves were performed. Second, biochemical assays were used to study defence biomarkers: oxidative stress with Superoxide Dismutase (SOD), detoxification of organic compounds with Glutathione-S Transferase (GST), lipid peroxidation with Malondialdehyde (MDA), and immune processes with Laccase. In addition to the biochemical assays, a genetic approach was used to measure genetic diversity (haplotype and nucleotide diversity) at each site. Biomarker assays and genetic diversity were correlated with the chemical contaminants in bivalves using the Path-ComDim statistical model. Our results showed specific correlations between biochemical assays in the digestive glands with heavy metal contaminants, and between genetic diversity and organic pollution. Blocks of responses were analysed for correlations in order to develop standardized tools and guidelines that could improve our understanding of the short-term and long-term impact of contaminants on physiological parameters.


Asunto(s)
Monitoreo del Ambiente , Pectinidae/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Biomarcadores/metabolismo , Estado de Salud , Hidrocarburos Policíclicos Aromáticos/metabolismo , Contaminantes Químicos del Agua/análisis
7.
Aquat Toxicol ; 185: 160-170, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28222366

RESUMEN

Metallothioneins and vitellogenins are low molecular weight proteins that have been used widely in environmental monitoring as biomarkers of exposure and damage to metals and estrogenic compounds, respectively. In the present study, the responses of metallothionein and vitellogenin tissue concentrations were measured following acute (96h) aqueous exposures to cadmium in Saccostrea sp., a tropical cup oyster native to the Western Pacific Ocean that has recently established itself in the Caribbean Sea. Adult oysters (1.5-5.0cm shell length) collected from the municipal marina of Santa Marta, Colombia (Caribbean Sea) and acclimated for 5days in the laboratory, were exposed to Cd at five concentrations (0, 1, 10, 100 and 1000µg/L) and their tissues (gills, digestive gland and adductor muscle) were analyzed in pools of 5 individuals (3 replicates per concentration). Metallothioneins in digestive glands of oysters exposed to Cd concentrations≥100µg/L showed a significant increase, from 8.0 to 14.8µg MT/mg total protein, whereas metallothionein concentrations in gills increased to lesser extent, and no differences were observed in adductor muscle. Metallothionein concentrations in digestive gland and gills correlated directly with whole soft tissue Cd concentrations (ranging from 2 to 297µg/g dw Cd). Vitellogenin in homogenates of oyster gonad tissue, after 96h of exposure to 1000µg/L Cd, were significantly lower (0.04mg P/g gonad) compared to control oysters (0.68mg P/g gonad), suggestive of an anti-estrogenic effect of Cd at high concentrations, whereas no significant changes in vitellogenin concentrations were observed at intermediate Cd exposure concentrations. This study confirms acute responses of metallothionein and vitellogenin concentrations in tissues of Saccostrea sp. exposed to high concentrations of cadmium (Cd≥100µg/L, 96h). The present results are first step towards validating the use of these two proteins as biomarkers of metal exposure in this species.


Asunto(s)
Cadmio/toxicidad , Exposición a Riesgos Ambientales/análisis , Metalotioneína/metabolismo , Ostreidae/metabolismo , Vitelogeninas/metabolismo , Animales , Biomarcadores/metabolismo , Branquias/efectos de los fármacos , Modelos Lineales
8.
PLoS One ; 11(3): e0150184, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26938082

RESUMEN

Understanding the effects of chronic chemical contamination on natural populations of marine organisms is complex due to the combined effects of different types of pollutants and environmental parameters that can modulate the physiological responses to stress. Here, we present the effects of a chronic contamination in a marine bivalve by combining multiple approaches that provide information on individual and population health. We sampled variegated scallops (Mimachlamys varia) at sites characterized by different contaminants and contamination levels to study the short and long-term (intergenerational) responses of this species to physiological stress. We used biomarkers (SOD, MDA, GST, laccase, citrate synthase and phosphatases) as indicators of oxidative stress, immune system alteration, mitochondrial respiration and general metabolism, and measured population genetic diversity at each site. In parallel, concentration of 14 trace metals and 45 organic contaminants (PAHs, PCBs, pesticides) in tissues were measured. Scallops were collected outside and during their reproductive season to investigate temporal variability in contaminant and biomarker levels. Our analyses revealed that the levels of two biomarkers (Laccase-type phenoloxidase and malondialdehyde) were significantly correlated with Cd concentration. Additionally, we observed significant seasonal differences for four of the five biomarkers, which is likely due to the scallop reproductive status at time of sampling. As a source of concern, a location that was identified as a reference site on the basis of inorganic contaminant levels presented the same level of some persistent organic pollutants (DDT and its metabolites) than more impacted sites. Finally, potential long-term effects of heavy metal contamination were observed for variegated scallops as genetic diversity was depressed in the most polluted sites.


Asunto(s)
Metales Pesados/farmacología , Pectinidae/efectos de los fármacos , Plaguicidas/farmacología , Bifenilos Policlorados/farmacología , Hidrocarburos Policíclicos Aromáticos/farmacología , Contaminantes Químicos del Agua/farmacología , Animales , Citrato (si)-Sintasa , Tracto Gastrointestinal/metabolismo , Variación Genética , Glutatión Transferasa/metabolismo , Malondialdehído/metabolismo , Metales Pesados/metabolismo , Pectinidae/genética , Pectinidae/metabolismo , Plaguicidas/metabolismo , Bifenilos Policlorados/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/metabolismo
9.
PLoS One ; 7(12): e52302, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300636

RESUMEN

Hybrid zones are noteworthy systems for the study of environmental adaptation to fast-changing environments, as they constitute reservoirs of polymorphism and are key to the maintenance of biodiversity. They can move in relation to climate fluctuations, as temperature can affect both selection and migration, or remain trapped by environmental and physical barriers. There is therefore a very strong incentive to study the dynamics of hybrid zones subjected to climate variations. The infaunal bivalve Macoma balthica emerges as a noteworthy model species, as divergent lineages hybridize, and its native NE Atlantic range is currently contracting to the North. To investigate the dynamics and functioning of hybrid zones in M. balthica, we developed new molecular markers by sequencing the collective transcriptome of 30 individuals. Ten individuals were pooled for each of the three populations sampled at the margins of two hybrid zones. A single 454 run generated 277 Mb from which 17K SNPs were detected. SNP density averaged 1 polymorphic site every 14 to 19 bases, for mitochondrial and nuclear loci, respectively. An [Formula: see text] scan detected high genetic divergence among several hundred SNPs, some of them involved in energetic metabolism, cellular respiration and physiological stress. The high population differentiation, recorded for nuclear-encoded ATP synthase and NADH dehydrogenase as well as most mitochondrial loci, suggests cytonuclear genetic incompatibilities. Results from this study will help pave the way to a high-resolution study of hybrid zone dynamics in M. balthica, and the relative importance of endogenous and exogenous barriers to gene flow in this system.


Asunto(s)
Bivalvos/genética , Evolución Molecular , Perfilación de la Expresión Génica , Marcadores Genéticos/genética , Polimorfismo de Nucleótido Simple/genética , Adaptación Fisiológica/genética , Animales , Bivalvos/fisiología , Sitios Genéticos/genética , Desequilibrio de Ligamiento/genética , Anotación de Secuencia Molecular , Selección Genética
10.
PLoS One ; 7(11): e50096, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185542

RESUMEN

Understanding the mechanisms that drive prey selection is a major challenge in foraging ecology. Most studies of foraging strategies have focused on behavioural costs, and have generally failed to recognize that differences in the quality of prey may be as important to predators as the costs of acquisition. Here, we tested whether there is a relationship between the quality of diets (kJ · g(-1)) consumed by cetaceans in the North Atlantic and their metabolic costs of living as estimated by indicators of muscle performance (mitochondrial density, n = 60, and lipid content, n = 37). We found that the cost of living of 11 cetacean species is tightly coupled with the quality of prey they consume. This relationship between diet quality and cost of living appears to be independent of phylogeny and body size, and runs counter to predictions that stem from the well-known scaling relationships between mass and metabolic rates. Our finding suggests that the quality of prey rather than the sheer quantity of food is a major determinant of foraging strategies employed by predators to meet their specific energy requirements. This predator-specific dependence on food quality appears to reflect the evolution of ecological strategies at a species level, and has implications for risk assessment associated with the consequences of changing the quality and quantities of prey available to top predators in marine ecosystems.


Asunto(s)
Dieta , Delfines/fisiología , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Marsopas/fisiología , Conducta Predatoria/fisiología , Ballenas/fisiología , Animales , Evolución Biológica , Tamaño Corporal , Ingestión de Alimentos , Cadena Alimentaria , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA